RAMIFICATION IN ELLIPTIC MODULAR FUNCTION FIELDS

DONALD L. McQUILLAN

1. The field of elliptic modular functions of level n is a finite galois extension K of the field $\mathbb{C}(j)$ generated over \mathbb{C} by the Weierstrass absolute invariant j. Furthermore, the galois group is $\text{LF}(2, n) = \text{SL}(2, \mathbb{Z}/n\mathbb{Z})/\pm I_2$ and the genus g of K is given by

$$2g - 2 = \frac{1}{12} \cdot (n - 6)n^2 \prod_{q \mid n} (1 - 1/q^2)$$

for $n > 2$ ($g = 0$ for $n = 1, 2$). If p is a prime number not dividing n and if k is an algebraic closure of $\text{GF}(p) = \mathbb{Z}/p\mathbb{Z}$ (which can also be an algebraic closure of \mathbb{Q}), Igusa [4] constructed a galois extension of $k(j)$ with the same galois group and the same genus. On the other hand, if the level n is a prime number q, Hecke [3] proved that $K/\mathbb{C}(j)$ is uniquely determined by the two properties. The purpose of this short note is to extend this theorem of Hecke in the following way:

Theorem. Let $K/k(j)$ be a galois extension of genus $g = q$ with $\text{LF}(2, q)$ as galois group. Then, the ramification of $K/k(j)$ is uniquely determined. Hence, (as in Igusa’s extension) $K/k(j)$ is ramified over one point with index q and over two other points with indices $2, 3$ for $p \neq 2, 3$, over one other point with the tetrahedral group as inertia group (second ramification group = trivial) for $p = 2$ and with the dihedral group of order 6 as inertia group (second ramification group = trivial) for $p = 3$. Moreover, in the case $p = 2, 3$, (if we fix three points with ramification indices $2, 3, q$) the extension $K/k(j)$ is uniquely determined.

2. We shall start proving the theorem. Since the case $q = 2$ can be treated separately (and rather easily), we shall assume that q is an odd prime. Suppose that K is ramified over $k(j)$ at $j = a_1, a_2, \cdots, a_w$ and that

$$T(a_j) \supset V_1(a_j) \supset V_2(a_j) \supset \cdots$$

is a sequence of the inertia group and the first, second, \cdots ramification groups at a place of K lying over a_j. Then, it is a normal sequence (unique up to an inner automorphism of $\text{LF}(2, q)$) such that $V_1(a_j)$ is the unique p-Sylow group of $T(a_j)$ with cyclic factor group. In particular, the commutator group of $T(a_j)$ has to be a p-group. Now, thanks to Gierster [1], we know all subgroups of $\text{LF}(2, q)$: A subgroup of $\text{LF}(2, q)$ is

Received by the editors March 26, 1962.

414
(i) a cyclic group C_m of order m where $m=q$, $m|(q-1)/2$ or $m|(q+1)/2$,
(ii) a dihedral group D_{2n} of order $2n$ where $n|(q-1)$ or $n|(q+1)$,
(iii) a metacyclic group of order qt where $t|(q-1)/2$ with C_q as commutator group, or
(iv) a tetrahedral, octahedral or icosahedral group. Because of the property of $T(a_i)$ mentioned above, candidates for $T(a_i)$ are limited. In fact, they are C_m in (i), D_{2n} in (ii) with $n=p^r$ (p odd) and the tetrahedral group. This being remarked, the “relative genus formula” applied to $K/k(j)$ gives
\[
\sum_{i} (E_i - 1)/e_i = (2 - w) + 1/6 - 1/q
\]
where
\[
e_i = \text{ord. } T(a_i), \quad E_i = (\text{ord. } V_1(a_i) - 1) + (\text{ord. } V_2(a_i) - 1) + \cdots.
\]
Since the right side of the genus formula is not integral at q, at least one e_i, say e_1, is a multiple of q. Then $T(a_1)$ is either C_q or the tetrahedral group (with $q=3$, $p=2$). In the second case, K contains a cyclic subextension of $k(j)$ of degree 3, hence e_2, say, is also a multiple of $q=3$. If $T(a_2)$ is again the tetrahedral group, we get $e_1 = e_2 = 12$, $E_1, E_2 \geq 3$, and this will bring a contradiction. Hence, we can always assume that $T(a_1)$ is C_q. This implies
\[
\sum_{i \geq 1} (E_i - 1)/e_i = (2 - w) + 1/6.
\]
Since $e_1 \geq 2$ and $E_i \geq 0$, therefore, we have $w \leq 3$ and certainly $w \geq 2$. Suppose, first, that $w = 3$. Then, we see immediately that $e_2 = 2$. $e_3 = 3$ with $E_2 = E_3 = 0$, hence $p \neq 2$, 3. Suppose, next, that $w = 2$. Then, we have $e_2 = 6(E_2 - 1)$ and this is a multiple of p. Consequently, $T(a_2)$ is C_m in (i), D_{2n} in (ii) with $n = 3^r$ or the tetrahedral group (with $V_2(a_2) = 1$). In the second case, we see that $T(a_2) = D_t$ (with $V_2(a_2) = 1$). We shall show that the first possibility has to be rejected entirely.

3. We recall [1] that subgroups in (i), (iii) are unique up to inner automorphisms of $LF(2, q)$. We denote by Σ the subextension of $k(j)$ which corresponds (by the theory of Galois) to the group of linear transformations $x \rightarrow ax + b$ with a in $GF(q)^*$ (= multiplicative group of $GF(q)$) and b in $GF(q)$. Using Hilbert’s galois theory, we shall calculate the relative genus formulas for K/Σ and for $\Sigma/k(j)$ (cf. [4, pp. 473–474]). In doing this, we can assume that $T(a_i)$ is the group of
linear transformations $x \rightarrow x + b$ with b in $GF(q)$. Suppose, first, that $T(a_2) = C_{e_2}$ with $e_2 | (q-1)/2$. Then, we can assume that $T(a_2)$ is the subgroup of order e_2 of the group of linear transformations $x \rightarrow a^2 x$ with a in $GF(q)^\star$. Thus, if g_0 is the genus of Σ, we get

$$2g - 2 = (q - 1)^2/2 + q(q - 1)/e_2 \cdot ((e_2 - 1) + E_2) + q(q - 1)/2 \cdot (2g_0 - 2),$$

$$2g_0 - 2 = (q - 1) + (q - 1)/e_2 \cdot ((e_2 - 1) + E_2) - 2(q + 1).$$

By eliminating g_0, we get $q(q+1)(q-1) = 0$. This is a contradiction.

Suppose, next, that $T(a_2) = C_{e_3}$ with $e_3 | (e_2 + 1)/2$. Then, in the same way we get

$$2g - 2 = (q - 1)^2/2 + q(q - 1)/2 \cdot (2g_0 - 2),$$

$$2g_0 - 2 = (q - 1) + (q + 1)/e_3 \cdot ((e_3 - 1) + E_2) - 2(q + 1),$$

and hence $q(q+1)(q-1) = 0$. This is a contradiction.

4. Finally, we shall indicate how the uniqueness of $K/k(j)$ follows from the information about ramifications in the case $p \neq 2, 3$. Suppose that $K_1/k(j), K_2/k(j)$ are two such extensions, i.e. with the same genus g and with $LF(2, q)$ as galois group. By an automorphism of $k(j)$, we can make an adjustment so that $K_1/k(j), K_2/k(j)$ are ramified over the same three points a_1, a_2, a_3 with the same indices. Consider their compositum $\Omega/k(j)$ (in some algebraic closure of $k(j)$). Then $\Omega/k(j)$ is ramified only over a_1, a_2, a_3 and, in fact, tamely. Let G be the galois group of $\Omega/k(j)$ and let H_1, H_2 be the normal subgroups of G which correspond to K_1, K_2. Then, by a general result of Grothendieck [2], we can pick $\sigma_1, \sigma_2, \sigma_3$ from inertia groups over a_1, a_2, a_3 which generate G and which satisfy $\sigma_1 \sigma_2 \sigma_3 = 1$. Let σ_1', σ_2' be the images of σ_1 in $G/H_1, G/H_2$. Then, by a lemma of Hecke [3, p. 574], there exists an isomorphism $G/H_1 \simeq G/H_2$ in which σ_1' and σ_2' correspond to each other. This is possible (if and) only if $H_1 = H_2$ completing the proof.

References

University College Galway, Ireland