ON REGULAR LOCAL RINGS

K. R. MOUNT

This paper generalizes slightly a result of Kunz [1] and Nakai [2]. If $R > S$ are commutative rings with identity we introduce a module $D^*(R/S)$ defined as the quotient of the module $D(R/S)$ of S differentials of R by the submodule consisting of elements which are mapped to zero by every homomorphism of $D(R/S)$ having values in a finitely generated R module. The characteristic exponent of a field is defined to be 1 if the field is of characteristic zero and to be p if the characteristic of the field is p. The result is then: If R is a local ring containing a field k of characteristic exponent p such that $D^*(R/k^p)$ is finitely generated, then the following conditions are equivalent: (i) R is a regular local ring. (ii) $D^*(R/k^p)$ is free and if x is an element of the completion of R such that $x^p = 0$ then $x = 0$. (iii) $D^*(R/k^p)$ is free and if x is an element of the form ring of R such that $x^p = 0$ then $x = 0$. We remark that in characteristic zero regularity (under the finiteness condition) is equivalent to the freedom of $D^*(R/k)$ and in any case if the local ring is of the form A_q where A is a finitely generated integral domain and q is a prime the second part of (ii) is automatically satisfied. (See Zariski and Samuel [4, p. 314].)

Lemma 1. If $R > S$ are commutative rings with identity then there is one and only one module $D^*(R/S)$ (to within R-isomorphism) satisfying the conditions: (i) There is an S-derivation d^* from R to $D^*(R/S)$ such that the image of d^* generates $D^*(R/S)$. (ii) If h is an S derivation from R to a finitely generated R module M then there is an R homomorphism $D^*(h)$ from $D^*(R/S)$ to M such that $D^*(h)d^* = h$. (iii) If f is an element of $D^*(R/S)$ then $h(f) = 0$ for every homomorphism h of D^* to a finitely generated R module if and only if $f = 0$.

Proof. If $F(R/S)$ denotes the collection of elements of $D(R/S)$ annihilated by all R homomorphisms to finitely generated R modules, let q denote the quotient map from $D(R/S)$ to $D(R/S)/F(R/S) = D^*(R/S)$ and set $d^* = qd$ where d is the derivation from R to $D(R/S)$. If h is an S derivation from R to a module N denote by $D(h)$ the homomorphism from $D(R/S)$ satisfying $D(h)d = h$ and suppose M is a second module with properties (i)−(iii) where $d^#$ denotes the derivation from R to M and $D^#(h)$ denotes the homomorphism assigned to a derivation from R to N. If b maps M to a finitely generated R module M then $h(f) = 0$ for every homomorphism h of D^* to a finitely generated R module if and only if $f = 0$.

Received by the editors February 26, 1962.

1 This work was supported in part by NSF Grant G-9508.

432
generated module then one checks easily that \(D(b \, d\#) = bD(d\#) \) and hence if \(f \) is an element of \(F(R/S) \) we have \(D(d\#)(f) = 0 \). Denote by \(D^*(d\#) \) the homomorphism from \(D^*(R/S) \) to \(M \) satisfying the equation \(D^*(d\#)q(f) = D(d\#)(f) \) for \(f \) in \(R \). If \(x \) is an element of \(D(R/S) \) with \(D^*(d\#)q(x) = 0 \) then for a homomorphism \(g \) from \(D(R/S) \) to a finitely generated module \(P \) it follows that \(D^*(g \, d) \) \(D(d\#) = g \), thus \(g(x) = 0 \) and \(D^*(d\#) \) is an isomorphism.

Lemma 2. If \(R \) is a local ring containing a field \(K \) such that \(D^*(R/K) \) is finitely generated, or if \(M = D(R/K)/\bigcap m^nD(R/K) \) is finitely generated then \(M = D^*(R/K) \) (\(m \) the maximal ideal of \(R \)).

Proof. First \(D^*(R/K) \) is clearly Hausdorff. Denote by \(h \) the quotient map from \(R \) to \(R/m = L \) and note that \(D^*(L/K) = D(L/K) \), using Lemma 1. Let \(A \) be the submodule of \(R/m \otimes D^*(R/K) \) generated by the elements of the form \(1 \otimes d^*x \) for \(x \) in \(m \) and set \(D^*(L/K) = [R/m \otimes D^*(R/K)]/A \). Define a derivation \(d\# \) from \(R/m \) to \(D^*(L/K) \) by \(d\#(x) = Cl(1 \otimes d^*x) \) where \(Cl(y) \) denotes the coset determined by the element \(y \). If \(f \) is a derivation (over \(K \)) from \(R/m \) to \(M \), a finitely generated \(L \) module, then \(fh \) is a derivation of \(R \) to \(M \) and the map \(1 \otimes D^*(fh) \) induces a homomorphism \(D^*(f) \) from \(D^*(L/K) \) to \(M \) such that \(D^*(f)d\#(x) = f(x) \). Since \(D^*(L/K) \) is finitely generated it satisfies (i)–(iii) of Lemma 1 and thus \(D^*(L/K) = D^*(L/K) = D(L/K) \).

Denote by \(R(n) \) the ring \(R/m^n \) and by \(m(n) \) the maximal ideal of \(R(n) \) and note that we have the exact sequence \(m(n)/m(n)^2 \rightarrow R(n)/m(n) \otimes D(R(n)/K) \rightarrow D(L/K) \rightarrow 0 \) (Nakai [2, Proposition 9]). It follows easily that \(D(R(n)/K) \) is finitely generated. Now consider an element \(z \) of \(F(R/K) \) and note that if \(h(n) \) denotes the quotient map from \(R \) to \(R(n) \) and if \(d(n) \) is the \(K \) derivation from \(R(n) \) to \(D(R(n)/K) \) then \(D(d(n)h(n)) \) is a homomorphism from \(D(R/K) \) to \(D(R(n)/K) \) with kernel contained in \(m^nD(R/K) \) (Nakai [2, Proposition 9]) and thus \(z \) is an element of \(\bigcap m^nD(R/K) \). If \(M \) is finitely generated then one checks easily that it satisfies conditions (i)–(iii) of Lemma 1.

If \(R \) is a local ring with maximal ideal \(m \) and \(M \) is a Hausdorff \(R \) module in the \(m \)-adic topology denote by \(Co(M) \) the completion of \(M \).

Lemma 3. If \(R \) is a local ring containing a field \(K \) with \(D^*(R/K) \) finitely generated then the completion of \(D^*(R/K) \) is isomorphic to \(D^*(Co(R)/K) \).

Proof. It will suffice to show that there is an isomorphism from the module \(D^*(R/K)/m^nD^*(R/K) \) to \(D^*(Co(R)/K)/m^nD^*(Co(R)/K) \) which commutes with the quotient maps. Denote by \(D(n)^* \) the
module $D^*(R/K)/m^*D^*(R/K)$ and by $C(n)^*$ the module $D^*(R/K)/m^*D^*(R/K)$. Let $p(n+1/n)$ and $q(n+1/n)$ represent the maps from $D(n+1)^*$ to $D(n)^*$ and from $C(n+1)^*$ to $C(n)^*$ respectively and denote by $p(n)$ and $q(n)$ the quotient maps from $D^*(R/K)$ to $D(n)^*$ and from $D^*(R/K)$ to $C(n)^*$. If c^* denotes the derivation from $Co(R)$ to $D^*(R/K)$ then the derivation $d(n)# = q(n)c^*$ gives rise to a homomorphism $D(d(n)#)$ from $D(R/K)$ to $C(n)^*$ such that $D(d(n)#)d = d(n)#$. If f is an element of $m^*D(R/K)$ then $D(d(n)#)(f) = 0$ and thus there is a homomorphism $J(n)$ from $D(n)^*$ to $C(n)^*$ satisfying the equation $(J(n)p(n))(r(g)) = D(d(n)#)(g)$ for g in $D(R/K)$ and r the quotient map from $D(R/K)$ to $D^*(R/K)$. Suppose h is in $Co(R)$, write h in the form $h = h' + h''$ with h' in R and h'' in $m^{n+1}Co(R)$ and set $e(n)[h] = q(n)d*(h')$. The map $e(n)$ defines a K derivation from $Co(R)$ to $D(n)^*$ where we consider $D(n)^*$ as a $Co(R)$ module by setting $h - u = h'$ for h' as above. Denote by $C(v)$ the homomorphism from $D(Co(R)/K)$ to P determined if v is a K derivation from $Co(R)$ to P. If u is an element of $m^*D(Co(R)/K)$ then $C(v)(u)$ is an element of $m^*D(R/K)$ whence there is a homomorphism $H(n)$ from $C(n)^*$ to $D(n)^*$ with $H(n)(q(n)s(f)) = C(v)(f)$ for f the quotient map from $D(Co(R)/K)$ to $D^*(Co(R)/K)$. For x in R we have $(H(n)f(n))(p(n)d*x) = p(n)d*x$ and hence $J(n)$ is a monomorphism. If x is in $Co(R)$ then writing $x = x' + x''$ with x'' in $m^{n+1}Co(R)$ and x' in R we have that $c^*(x) = c^*(x')$ modulo $m^*Co(R)$ from which it follows that $J(n)$ is onto. To complete the assertion we need only show that $J(n)p(n+1/n) = q(n+1/n)J(n+1)$ and it suffices to show this for the elements of the form $p(n+1/n)d*x$ which one checks easily.

As a consequence we have that if $R = K[[X_1, \ldots, X_n]]$ with $[K; K^p] < \infty$ then $D^*(R/K^p)$ is free on the basis d^*X_i and d^*Y_j where Y_j is a p basis of K over K^p. This follows by completing $K[X_1, \ldots, X_n]_K$ where X is the ideal generated by the X_i. Also note that if R is any local ring containing a field K such that $D^*(R/K)$ is finitely generated and if M is a hausdorff R module then any homomorphism from $D(R/K)$ to M annihilates $F(R/K)$.

Proposition 1. Let R be a local ring containing a field K such that $D^*(R/K)$ is finitely generated. If $R' > R$ with R' regularly quasi-finite over R then $D^*(R'/K)$ is finitely generated.

(For definitions see [3]).

Proof. Suppose $R' = R[x_1, \ldots, x_n]$ and assume $R' = R''$ where m'' is a maximal ideal of R''. Denote by N'' the image of R'' under the map $d \cdot k$ where k is the inclusion of R'' into R' and let g denote
the induced map from $D(R''/K)$ to $D^*(R'/K)$. The image of g is
spanned by the restriction of g to the set $(d \cdot k)(R)$ and by the $g \, dx_i$.
We note first that $D^*(R'/K)$ is a hausdorff R' module and thus is a
hausdorff R module. The map $g(d \cdot k)$ restricted to R is thus a K
derivation of R to a hausdorff R module and hence the image of g is
generated by a homomorphic image of $D^*(R/K)$ and by the $g \, dx_i$;
whence N'' is finitely generated. Now suppose f is in R'. There is an
element n of R'', n not in m'', such that nf lies in R'', thus $d^*(nf) = d^*(n) \cdot f + nd^*(f)$, hence $d^*(f) = (1/n) \cdot h$ where h is in the image of g so $D^*(R'/K)$ is finitely generated.

Lemma 4. Suppose f is an epimorphism of the local ring R to the local
ring R' such that R contains a field K with $D^*(R/K)$ and $D^*(R'/K)$
finely generated. If $A = \ker (f)$ then we have the exact sequence
$(R/A) \otimes A \rightarrow R/A \otimes D^*(R/K) \rightarrow D^*(R'/K) \rightarrow 0$.

Proof. Denote by B the submodule of $R/A \otimes D^*(R/K)$ generated
by the elements of the form $1 \otimes d^*a$ where a is in A and set
$M = [R/A \otimes D^*(R/K)]/B$. If h is the quotient map of $R/A \otimes D^*(R/K)$
onto M we set $g(x) = h(1 \otimes d^*x')$ where $f(x') = x$ and note that this
defines a map of R/A into M which is independent of the representa-
tion x' and is a K derivation of R/A. The induced homomorphism
$H^* = D^*(g)$ from $D^*(R'/K)$ to M is such that $H^*(d^*x) = g(x)$ for x in
R/A. On the other hand the module $D^*(R'/K)$ is finitely generated
as an R module and the map d'^*f from R to $D^*(R'/K)$ is a K
derivation of R, thus $D^*(d'^*f)$ maps $D^*(R/K)$ to $D^*(R'/K)$ such that
$D^*(d'^*f)(d^*x) = d'^*f(x)$ for x in R. It follows that $1 \otimes D^*$ carries M
into $D^*(R'/K)$ by $(1 \otimes D^*)(x \otimes y) = xD^*(y)$ with $(1 \otimes D^*)(dz) = 0$
for z in A. There is thus a map E^* from M to $D^*(R'/K)$ and one need
only check that H^*E^* and E^*H^* are the identity.

Lemma 5. Let $R = K[[X_1, \ldots, X_n]]$ with $[K; K^p] < \infty$ where p
is the characteristic exponent of K, suppose A is an ideal of R and assume
that $D(A) < A$ for every K^p derivation of R into R. If $A \neq 0$ then (i) there
is an element x of R such that x is not in A but x^p is in A, or $A = R$
and (ii) there is an element x of the form ring of R/A with $x \neq 0$ and $x^p = 0$
or $A = R$.

Proof. Choose a p-basis for K over K^p say y_1, \ldots, y_r. If Q is a
power series in R we define the total degree of Q to be the pair (u, v)
where u is the subdegree of Q and v is the degree of the leading form
of Q considered as a polynomial in the y_r. Order the total degrees
lexicographically and choose an element P of A of least total degree
(a, b) and assume $b \neq 0$. Since b is nonzero the partial derivative of P
with respect to one of the y_j occurring in the leading form $L(P)$ of P lies in A and reduces the total degree, thus no y_j may occur in $L(P)$ and $L(P)$ is in $K^p[X_1, \cdots, X_n]$. Now consider any one of the indeterminates X_i and note that the subdegree of P will be reduced by differentiating with respect to X_i unless the exponent to which X_i occurs in a given monomial of $L(P)$ is of the form sp. We therefore have assertion (ii). If Q is in A we may write it in the form $Q = \sum Q_a$ where a ranges over the collection of all the subsets of $T = \{1, \cdots, n\}$ (including the empty set) and Q_a is the sum of those monomials M of Q such that X_i appears in M with exponent of the form sp for those and only those i in a. We now denote by B_i the operation $X_i \partial / \partial X_i$ and note that B_i maps A into itself and that B_i is zero on the monomials of A in which X_i occurs with an exponent which is a multiple of p. The application of $B_i (p-1)$ times is the identity on any monomial which does not have X_i occurring with exponent a multiple of p. If Q is in A then applying $B_i (p-1)$ times and subtracting the result from Q we have that $\sum Q_a$ is in A where the sum runs over those subsets of T which contain n and by induction we have that Q_T is in A. Using (i) we have that there are elements of A such that $Q_T \neq 0$. Let W denote the collection of elements of A of least subdegree which lie in $K[[X_1^p, \cdots, X_n^p]]$ and let t be the least degree of the elements of W considered as polynomials in the y_j with coefficients in $K[[X_1^p, \cdots, X_n^p]]$. To prove assertion (i) it suffices to show that $t=0$. Note, however, that the set W remains fixed under the partial derivatives with respect to the y_j from which the assertion is immediate.

Theorem. If R is a local ring containing a field k of characteristic exponent p such that $D^*(R/k^p)$ is finitely generated then the following conditions are equivalent: (i) A is regular, (ii) $D^*(R/k^p)$ is free and if x is an element of $Co(R)$ such that $x^p = 0$ then $x = 0$, (iii) $D^*(R/k^p)$ is free and if x is an element of the form ring of R such that $x^p = 0$ then $x = 0$.

Proof. We first remark that if $k < K$ then in characteristic p (nonzero) we have that $D^*(R/k^p) = D^*(R/K^p)$ and in any case by Lemma 3 we may suppose that the ring R is complete. We may therefore assume in nonzero characteristic that $k = K$ is a field of coefficients of R. Consider the map $1 \otimes d\#$ carrying the module m/m^2 into $R/m \otimes D^*(R/K)$. To prove $1 \otimes d\#$ is an injection it suffices to prove the assertion for $R/m^2 = R^* = K + m^*$ where m^* is the maximal ideal of R^*. The projection g of R^* onto m^* is a K derivation to a finitely generated R^* module thus $D^*(g)$ maps $D^*(R/K)$ to m^* such that $D^*(g)d\#m = g(m) = m$ for m in m^*, thus $1 \otimes d\#$ is an injection. The map
1 \otimes d^* from m/m^2 to R/m \otimes D^*(R/K^p) is such that if x is in m and 1 \otimes d^*(x) = 0 then 1 \otimes D^*(d\#)(1 \otimes d^*)(x) = 0 which implies x is in m^2 by the above. Thus we have an exact sequence 0 \rightarrow m/m^2 \rightarrow R/m \otimes D^*(R/K^p) \rightarrow D^*(K/K^p) \rightarrow 0 in nonzero characteristic. Similarly in zero characteristic we may replace K^p by k in the above sequence. In nonzero characteristic we have that \([K: K^p] < \infty\) and a basis for \(D(K/K^p)\) is given by the \(dY_j\) where the \(Y_j\) are a \(p\)-basis for \(K\) over \(K^p\), and thus if \(m_i, 1 \leq i \leq n\) is a minimal system of generators for the maximal ideal of \(R\) the elements \(d^*m_j\) and \(d^*Y_i\) are a basis for the module \(D^*(R/K^p)\). In characteristic zero the \(d^*m_j\) are a subset of a basis for \(D^*(R/k)\). Let \(f\) be a map from \(K[[X_1, \cdots, X_n]]\) onto \(R\) carrying \(K\) onto \(K\) and \(X_i\) onto \(X_i\) where the \(X_i\) are indeterminates. Set \(N = \text{kernel} (f)\) and assume \(x\) is in \(N\). We have the equation 0 = \(d^*(f(x)) = \sum f(\partial x/\partial X_i)d^*m_i + \sum f(\partial x/\partial Y_j)d^*Y_j\) in characteristic \(p \neq 0\) and since \(D^*(R/K^p)\) is free all the partials of \(x\) must be in \(N\) which implies \(N = 0\) under the assumptions (ii) and (iii) by Lemma 5. In the case of characteristic zero we have that the partials with respect to the \(X_i\) all are in \(N\) since the \(d^*m_i\) can be extended to a basis and we may again apply Lemma 5.

Bibliography