OPEN 3-MANIFOLDS WHICH ARE SIMPLY CONNECTED AT INFINITY

C. H. EDWARDS, JR.¹

A triangulated open manifold M will be called 1-connected at infinity if each compact subset C of M is contained in a compact polyhedron P in M such that $M - P$ is connected and simply connected. Stallings has shown that, if M is a contractible open combinatorial manifold which is 1-connected at infinity and is of dimension $n \geq 5$, then M is piecewise-linearly homeomorphic to Euclidean n-space E^n [5].

Theorem 1. Let M be a contractible open 3-manifold, each of whose compact subsets can be imbedded in E^3. If M is 1-connected at infinity, then M is homeomorphic to E^3.

Notice that, in order to prove the 3-dimensional Poincaré conjecture, it would suffice to prove Theorem 1 without the hypothesis that each compact subset of M can be imbedded in E^3. For, if M is a simply connected closed 3-manifold and p is a point of M, then $M - p$ is a contractible open 3-manifold which is clearly 1-connected at infinity. Conversely, if the 3-dimensional Poincaré conjecture were known, then the hypothesis that each compact subset of M can be imbedded in E^3 would be unnecessary.

All spaces and mappings in this paper are considered in the polyhedral or piecewise-linear sense, unless otherwise stated. As usual, by an open n-manifold is meant a noncompact connected space triangulated by a countable simplicial complex without boundary, such that the link of each vertex is piecewise-linearly homeomorphic to the usual $(n-1)$-sphere.

Proof of Theorem 1. Let X be an arbitrary compact subset of M, and let Y be a connected compact subset of M which contains X. Using the fact that M is 1-connected at infinity, choose a compact polyhedron P such that $Y \subset P \subset M$ with $M - P$ connected and simply connected. If N is a regular neighborhood of P which contains P in its interior, then $M - N$ is also connected and simply connected, and the component N_0 of N which contains Y is a (connected) compact orientable 3-manifold with boundary [6]. Since M is contractible, and since the boundary S_0 of N_0 separates M into exactly two com-

¹ Presented to the Society, March 19, 1962; received by the editors April 10, 1962.

¹ This research was supported in part by the National Science Foundation, Grant G-11665.
ponents $\text{Int } N_0$ and $M - N_0$, S_0 is connected by Alexander duality.

Since $M - N$ is simply connected, the 1-dimensional Betti number of N is zero (also by Alexander duality). But the 1-dimensional Betti number of a bounded orientable 3-manifold is at least as large as the sum of the genera of its boundary surfaces \cite[p. 223]{4}. It follows that S_0 is a 2-sphere. The assumption that each compact subset of E^3 can be imbedded in E^3 now implies that N_0 is a 3-cell which contains X in its interior.

Since each compact subset of M lies interior to a 3-cell in M it follows easily that M is the union of a sequence \{C_n\}_n of 3-cells, with $C_n \subseteq \text{Int } C_{n+1}$, $n = 1, 2, \cdots$. A theorem of Brown now applies to show that M is homeomorphic to E^3 \cite{1}.

Theorem 1 will next be generalized by suppressing the restriction that M be contractible and relaxing the restriction that it be 1-connected at infinity. Let an open manifold U be called simply connected at infinity if each compact subset B of U is contained in a compact polyhedron Q in U such that each component of $U - Q$ is simply connected. By a punctured cube will be meant a space obtained from a 3-sphere by deleting the interiors of a finite (positive) number of mutually disjoint polyhedral 3-cells.

Lemma 1. Let U be an open 3-manifold which is simply connected at infinity, and such that each compact subset of U can be imbedded in E^3. Then each compact subset of U lies interior to a punctured cube in U.

Proof. Let A be an arbitrary compact subset of U, and let B be a connected compact subset of U containing A. Since U is simply connected at infinity, there is a compact polyhedron Q in U containing B, such that each component of $U - Q$ is simply connected. If N is a regular neighborhood of Q containing Q in its interior, then each component of $U - N$ is also simply connected, and the component N_0 of N which contains B is a (connected) compact orientable 3-manifold with boundary \cite{6}.

It will be shown that the fact that each component of $U - N$ is simply connected implies that N_0 lies in a punctured cube in U. The proof of this is by induction on the sum g of the genera of the boundary surfaces of N_0. If $g = 0$, then the hypothesis that each compact subset of U can be imbedded in E^3 implies that N_0 itself is a punctured cube. Now assume that the conclusion follows if $g < k$, where $k \geq 1$, and let the sum of the genera of the boundary surfaces of N_0 be k.

If S is a closed orientable 2-manifold of positive genus on the boundary of N_0, let J be a simple closed curve encircling one of the handles of S. Then the Dehn lemma \cite{2} gives a 2-cell D with $\text{Bd } D = J$.
and \(\text{Int } D \subset U - N \), since each component of \(U - \text{Int } N \) is simply connected.

It is first shown that each component of \(V = (U - N) - D \) is simply connected. Let \(K \) be a simple closed curve in \(V \) and let \(f \) be a piecewise-linear map of a 2-cell \(E \) into \(U - N \) such that \(f|\text{Bd } E \) is a homeomorphism of \(\text{Bd } E \) onto \(K \) and such that \(f \) is in general position with respect to \(D \), in the sense that each component of \(f^{-1}(D) \) is a simple closed curve. Let \(K^1 \) be an “inner” one of these simple closed curves, bounding the subdisk \(E^1 \) of \(E \). Then \(K^1 \) can be eliminated by first redefining \(f \) on \(E^1 \) and then deforming the new image of \(E^1 \) slightly away from \(D \). After a finite number of steps of this kind, it is seen that \(K \) can be shrunk to a point in \(V \).

Now thicken the 2-cell \(D \) to form a 3-cell \(C \) such that \(S \cap \text{Bd } C \) is an annular ring \(R \) with \(C - R \subset U - N \). Then each component of \(U - (N \cup C) \) is simply connected, and the sum of the genera of the boundary surfaces of \(N \cup C \) is \(k - 1 \). By induction \(U \) therefore contains a punctured cube containing \(N \cup C \) and hence containing \(A \) in its interior.

The following elementary lemma is easily proved.

Lemma 2. Let \(A \) and \(B \) be punctured cubes with \(A \subset \text{Int } B \) and let \(C \) and \(D \) be 3-cells with \(C \subset \text{Int } D \). Suppose that \(S \) and \(T \) are components of \(\text{Bd } A \) and \(\text{Bd } B \), respectively, such that \(S \) separates \(\text{Int } A \) and \(T \) in \(B \). If \(f \) is a piecewise-linear homeomorphism of \(A \) into \(C \) such that \(f(S) = \text{Bd } C \), then there is a piecewise-linear homeomorphism \(g \) of \(B \) into \(D \) such that \(g(T) = \text{Bd } D \) and \(g/A = f \).

Theorem 2. Let the open 3-manifold \(U \) be the union of a sequence \(\{A_i\}_i \) of punctured cubes, with \(A_i \subset \text{Int } A_{i+1}, \ i = 1, 2, \ldots \). Then there is a totally disconnected subset \(Y \) of \(E^3 \) such that \(U \) and \(E^3 - Y \) are homeomorphic.

Proof. The collection \(\{A_i\}_i \) is first subjected to a sequence of alterations as follows. In the first step, a new punctured cube \(A_1^1 \) interior to \(A_2 \) is obtained from \(A_1 \) by adding to \(A_1 \) each component of \(A_2 - A_1 \) which contains no component of \(\text{Bd } A_2 \) (the closure of each such component of \(A_2 - A_1 \) is a 3-cell). Each component of \(\text{Bd } A_1^1 \) will then separate \(\text{Int } A_1^1 \) and some component of \(\text{Bd } A_2 \) in \(A_2 \).

In the second step, the punctured cube \(A_2^2 \) interior to \(A_3 \) is obtained from \(A_2 \) by adding to \(A_2 \) each component of \(A_3 - A_2 \) which contains no component of \(\text{Bd } A_3 \), and then \(A_2^2 \) is obtained from \(A_1^1 \) by adding to \(A_1^1 \) each component of \(A_2^2 - A_1^1 \) which contains no component of \(\text{Bd } A_2^2 \). Now each component of \(\text{Bd } A_2^2 \) separates \(\text{Int } A_1^1 \) from some...
component of $\text{Bd } A_3^2$ in A_3^2, and each component of $\text{Bd } A_n^2$ separates $\text{Int } A_n^2$ and $\text{some component of } \text{Bd } A_n$ in A_n.

Suppose that the punctured cubes $A_i^{i-1}, A_2^{i-1}, \ldots, A_{n-1}^{i-1}$ are the result of the first $i-1$ steps in this process. In the ith step the punctured cube A_i^i is obtained from A_i by adding to A_i each component of $A_{i+1}^i - A_i$ which contains no component of $\text{Bd } A_{i+1}$; then A_{i-1}^i is obtained from A_{i-1}^{i-1} by adding to A_{i-1}^{i-1} each component of $A_i^i - A_{i-1}^i$ which contains no component of $\text{Bd } A_i^i$, and so on; finally the punctured cube A_1^1 is obtained from A_1 by adding to A_1 each component of $A_2^1 - A_1$ which contains no component of $\text{Bd } A_2^1$. Now the punctured cubes A_i^1, \ldots, A_1^1 satisfy the condition that each component of $\text{Bd } A_i, j<i$, separates $\text{Int } A_j^i$ and some component of $\text{Bd } A_{i+1}$ in A_j. This process is continued by induction. Notice that $A_m^n = A_n^n$ if m and n are sufficiently large, $i=1, 2, \ldots$. Consequently the result of this sequence of alterations is a new sequence $\{B_i\}_{i=1}^\infty$ of punctured cubes such that (1) $U = \bigcup_{i=1}^\infty B_i$, (2) $B_i \subset \text{Int } B_{i+1}$ for each i, and (3) each component of $\text{Bd } B_i$ separates $\text{Int } B_i$ and some component of $\text{Bd } B_{i+1}$.

Now let E^3 be expressed as the union of a sequence $\{C_i\}_{i=1}^\infty$ of polyhedral 3-cells such that $C_i \subset \text{Int } C_{i+1}$, $i=1, 2, \ldots$. Let S_i be any component of $\text{Bd } B_i$ and, S_{i-1} having been defined as a component of $\text{Bd } B_{i-1}$, let S_i be a component of $\text{Bd } B_i$ such that S_{i-1} separates $\text{Int } B_{i-1}$ and S_i in B_i.

Then use Lemma 2 to define by induction a sequence $\{g_i\}_{i=1}^\infty$ of maps such that, for each i, (1) g_i is a piecewise-linear homeomorphism of B_i into C_i, (2) $g_i(S_i) = \text{Bd } C_i$, and (3) $g_i|_{B_{i-1}} = g_{i-1}$. Finally define a homeomorphism f of U into E^3 by setting $f(x) = g_i(x)$ if $x \in B_i$.

If F_i is the closure of $C_i - g_i(B_i)$, then clearly F_i is the union of a finite number of mutually disjoint 3-cells. If $X = \bigcap_{i=1}^\infty F_i$, then $f(U) = E^3 - X$. Now let G be the decomposition space obtained from E^3 by shrinking each component of X to a point, and let h be the natural map of E^3 onto G, which is a homeomorphism on $E^3 - X$. Then $Y = h(X)$ is a totally disconnected subset of G, and it follows from [3] that G is homeomorphic to E^3. But hf is a homeomorphism of U onto $G - Y$, so the proof of Theorem 2 is complete.

Theorem 3. Let U be an open 3-manifold, each of whose compact subsets can be imbedded in E^3. If U is simply connected at infinity, then there is a totally disconnected subset Y of E^3 such that U and $E^3 - Y$ are homeomorphic.
OPEN 3-MANIFOLDS WHICH ARE SIMPLY CONNECTED AT INFINITY 395

Proof. Lemma 1 implies that U can be expressed as the union of an increasing sequence of punctured cubes, as in the hypotheses of Theorem 2.

References

University of Wisconsin