STELLAR NEIGHBORHOODS IN POLYHEDRAL
MANIFOLDS

RONALD H. ROSEN

Introduction. It is the purpose of this paper to give some weaker
analogues for polyhedral manifolds of well-known properties of com-
binatorial manifolds. This is now possible primarily because of the
recent work of Mazur [3; 4] and M. Brown [1]. A crucial issue in this
area is the extent to which these analogues may be improved for
arbitrary triangulated manifolds.

We shall prove a theorem which will be applied later on, after
making some preliminary definitions. The join of two spaces X and
Y is represented by X o Y. A map f of X o Y — Y on itself is called
ray preserving if for each ray p o q — q, p in X, q in Y, f(p o q - q)
\subset p o q — q. A subset K of a cone X o p is called starlike if p \in K
and each segment p o x, x \in X, meets K in a connected set; p is the
center of K. Consider E^n to be the open cone over S^{n-1} from the origin
p, in the usual way. We coordinatize E^n by (x, t), x \in S^n, t a real
number with 0 \leq t < \infty; (S^{n-1}, 0) = p. Let D^n be the unit n-ball
p o (S^{n-1}, 1).

Theorem 1. Let K be a compact starlike set with center p, lying in
the interior of D^n. There is a ray preserving map f of E^n on itself such
that f(K) = p, f| E^n - K is one-to-one and f| E^n - D^n is the identity.

Proof. Let \rho be the usual euclidean metric for E^n. Choose 0 < \epsilon < 1
so that K \subseteq p o (S^{n-1}, \epsilon) = D_\epsilon. First we define f on D_\epsilon. If z = (x, t) \in D_\epsilon,
f(z) = (x, \rho(z, K)). It is clear that f is a ray preserving map and mono-
tone nonincreasing with respect to the coordinate t, so f(D_\epsilon) \subseteq D_\epsilon;
furthermore f(K) = p and f| D_\epsilon - K is one-to-one. To see the last
property suppose (x, t_1) and (x, t_2) are points of D_\epsilon - K with t_1 < t_2.
Let y \in K so that \rho((x, t_2), y) = \rho((x, t_2), K). Since y o p \subseteq K and \rho
is the ordinary straight line distance, obviously \rho((x, t_1), y o p)
< \rho((x, t_2), y) and accordingly f(x, t_1) \neq f(x, t_2).

We next extend f to the annulus D^n - D_\epsilon, so that f is fixed on Bd D^n.
If z = (1 - \tau) \cdot (x, \epsilon) + \tau \cdot (x, 1), 0 \leq \tau \leq 1 and x \in S^n, let f(z) = (1 - \tau)
\cdot f(x, \epsilon) + \tau \cdot (x, 1). Finally let f be fixed outside of D^n. Now f has the

Presented to the Society, October 2, 1961; received by the editors January 12,
1962.

1 This research in its original form was supported by contract NSF G18869. Revi-
sions including the addition of Theorem 9 were supported by contract Nonr (G)-
00098-62.

401
desired properties and is also monotone nonincreasing in the t-coordinate. Clearly f is realizable as the end of a ray preserving pseudo-isotopy starting at the identity, which is fixed outside of D^n and is monotone nonincreasing in t.

Corollary. f is a homeomorphism of $E^n - K$ onto $E^n - p$.

Theorem 2. Suppose X is a compact metric finite dimensional space and K is a compact starlike set in $X \circ p - X$. There is a ray preserving map f of $X \circ p$ on itself so that $f(K) = p$, f is a homeomorphism on $X \circ p - K$ and f is fixed on a neighborhood of X.

Proof. Suppose X is imbedded in $(S^{n-1}, 1) \subseteq E^n$. This is extended in the obvious way to an imbedding of $X \circ p$ in D^n. K is now starlike in Int D^n so we apply Theorem 1 here. Since the map we then get is ray preserving and maps D^n on itself, clearly it maps $X \circ p$ on itself. The restriction of this map to $X \circ p$ satisfies the necessary conditions except possibly the last, however a slight alteration can be made in the proof of Theorem 1 so that the map constructed therein is also fixed on some neighborhood of Bd D^n.

1. A theorem due to Mazur. In [3] Mazur indicated that Theorem 4 of this section would follow from the form of the Generalized Schoenflies Theorem later proved by M. Brown [1] and Morse [6]; he also gave a proof of Theorem 5 in [4]. In [7] we indicated a simpler proof of the latter, using Theorem 4. For completeness we include our own proofs.

Theorem 3 (Moise-Alexander). Let M be a compact Hausdorff space which is the union of two open sets, each of which is homeomorphic to E^n. Then M is homeomorphic to S^n.

This was conjectured by Alexander for $n = 3$ and proved by Moise in that case [5]. Many people, including the author, have independently noticed that the proof for general n follows from [1] in a manner quite similar to Moise’s proof.

Theorem 4 (Mazur). If $Y \circ p$ is locally n-euclidean at p, then the suspension $S(Y)$ is homeomorphic to S^n.

Proof. Consider $S(Y)$ as $Y \times [-1, 1]$ with Y_{-1} and Y_1 identified as distinct points p' and p, respectively. Suppose U is a euclidean neighborhood of p in $S(Y)$ so that \overline{U} is compact. For some t_0, $-1 < t_0 < 1$, $U(Y_{t_0}) \subseteq [-1, 1] \subseteq U$. Y_{t_0} is closed in $S(Y)$, so Y, hence

A more general theorem can be proved but this is sufficient for our applications.
S(Y), is compact. Let \(h \) be a homeomorphism of \(S(Y) \) on itself, fixed on \(Y_0, \) which takes \(U(Y; t_0 \leq t) \) onto \(U(Y; t \leq t_0). \) \(U \) and \(h(U) \) are two euclidean neighborhoods which cover \(S(Y). \)

Corollary. \(Y \circ p - Y \) is homeomorphic to \(E^n. \)

Proof. There is a simple homeomorphism of \(Y \circ p - Y \) onto \(U(Y; 0 < t) \) in \(S(Y) \) and a homeomorphism of the second set onto \(S(Y) - p'. \)

Theorem 5 (Mazur). Let \(v \) be a vertex of a triangulated \(n \)-manifold \(M. \) The open star of \(v \) in \(M \) is homeomorphic to \(E^n. \)

Proof. Let \(B \) be the link of \(v \) in \(M. \) Since \(B \circ v - B \) is a neighborhood of \(v \) in \(M, \) by Theorem 4 \(S(B) \approx S^n. \) (We use the notation \(X \approx Y \) if \(X \) and \(Y \) are homeomorphic spaces.) Therefore by the corollary, \(B \circ v - B \approx E^n. \)

2. **Some analogues to combinatorial theorems.** M. Brown has called a subset of an \(n \)-manifold **cellular** if it is the intersection of a sequence \((C_n) \) of topological \(n \)-cells where \(C_{n+1} \subseteq \text{Int} \ C_n. \) Let \(Q \) be a subpolyhedron of a polyhedron \(P. \) The **stellar neighborhood of \(Q \) in \(P \) is the union of all open simplexes of \(P \) which have vertices lying in \(Q. \) Star \(Q \) is the union of all closed simplexes of \(P \) which meet \(Q. \) \(Q \) is said to be **full** in \(P \) if it contains each simplex of \(P, \) all of whose vertices lie in \(Q. \)

Henceforth all simplexes will be considered closed. If \(\sigma \) is a simplex of \(P, \) by \(\sigma^* \) we mean the union of all simplexes of \(P \) which contain \(\sigma, \) or equivalently \(\sigma^* = \sigma \circ \text{Lk} \sigma \) — where \(\text{Lk} \sigma \) is the link of \(\sigma \) in \(P; \sigma^* \) is called the **cluster** of \(\sigma. \) \(\hat{\sigma} \) is the union of all proper faces of \(\sigma; \sigma^b = \sigma - \hat{\sigma}. \) Finally \(\beta(\sigma) \) will be the barycenter of \(\sigma. \)

Theorem 6. Let \(K \) be a full finite subpolyhedron of a polyhedral \(n \)-manifold \(M. \) Then \(K \) is cellular in \(M \) if and only if its stellar neighborhood is homeomorphic to \(E^n. \)

Proof. (a) Assume \(K \) is cellular. Let \(V \) be the stellar neighborhood of \(K, \) \(B = \text{Bd} V \) and \(N = \text{Star} K = \overline{V}. \) Clearly \(B \neq \emptyset. \) Let \(X \) be the set of all midpoints of straight segments joining points of \(B \) to points of \(K. \) We shall show that the decomposition space of \(V \) with \(K \) identified to a point is homeomorphic to the open cone over \(X. \) For since \(K \) is full, each simplex of \(N \) can be represented as a join \(\sigma \circ \tau, \sigma \subseteq K, \tau \subseteq B. \) When \(K \) is identified to a point, \(\sigma \circ \tau - \sigma \) becomes simply the open cone over the set of all midpoints of segments from \(\tau \) to \(\sigma; \) the vertex of the cone is the image of \(K \) in the decomposition space. Since
such a representation holds for each maximal simplex in \(N \), the assertion is easily established.

Now let \(C \) be a topological \(n \)-cell lying in \(V \) with \(K \subset \text{Int} \ C \). By Theorem 1 of [1] there is a map \(f \) of \(V \) on itself fixed outside of \(C \) such that \(f(K) \) is a point and \(f|_{V-K} \) is one-to-one. Hence the existence of the map \(f \) shows that \(V \) is homeomorphic to the open cone over \(X \), with vertex \(f(K) \). By Theorem 4 and its corollary, \(V \approx E^n \).

(b) Now suppose \(V \approx E^n \). Since \(K \) is full we can conclude from the argument in part (a) that \(V \) can be represented as an open mapping cylinder over \(K \) (from the space \(X \)) using the segments from \(B \) to \(K \) minus their endpoints in \(B \). Since \(K \) is compact there is a topological \(n \)-cell \(C_1 \) in \(V \) so that \(K \subset \text{Int} \ C_1 \). Now let each segment be linearly parametrized from 0 to 1 with 0 the parameter of the endpoint in \(K \). There is an \(\epsilon_1, 0 < \epsilon_1 < 1/2 \), so that on each segment the subsegment from 0 to \(\epsilon_1 \) lies in \(\text{Int} \ C_1 \). Hence let \(h_1 \) be a homeomorphism of \(V \) into \(\text{Int} \ C_1 \), fixed on \(K \), which maps each ray from 0 to 1 linearly onto its subray from 0 to \(\epsilon_1 \). Thus there is a topological \(n \)-cell \(C_1 \) in \(\text{Int} \ C_1 \) with \(K \subset \text{Int} \ C_2 \). The process may be continued by induction to define a sequence \((C_n) \) of \(n \)-cells having the properties that \(\bigcap_n C_n = K \) and \(C_{n+1} \subset \text{Int} \ C_n \).

Corollary. Let \(K \) be a finite subpolyhedron of a polyhedral \(n \)-manifold \(M \). Then \(K \) is cellular if and only if its first barycentric stellar neighborhood in \(M \) is homeomorphic to \(E^n \).

Proof. The first barycentric subdivision of \(K \) is full in the corresponding subdivision of \(M \) by Lemma 9.4, p. 71 of [2].

It may be noted that Theorem 6 generalizes Theorem 5 since vertices are clearly cellular.

Theorem 7. Let \(\sigma \) be a simplex in a polyhedral \(n \)-manifold \(M \). Then \(\text{Int} \ \sigma^* \) is homeomorphic to \(E^n \).

Proof (Added in proof). Adapting the notation of Alexander in [8] (our manifolds may be noncompact) let \(M = \sigma \circ \text{Lk} \ \sigma + R \) and consider the simple subdivision \(M \to \beta(\sigma) \circ (\sigma \circ \text{Lk} \ \sigma) + R \). By Theorem 5, \(E^n \) is homeomorphic to \(\text{Int}(\beta(\sigma) \circ (\sigma \circ \text{Lk} \ \sigma)) = \text{Int} \ \sigma^* \). This method also tells us that, by Theorem 4, \(S(\sigma \circ \text{Lk} \ \sigma) \approx S^n \). Hence we have the

Corollary (Added in proof). If \(\sigma \) is a \(k \)-dimensional simplex in a triangulated \(n \)-manifold then \(S^k \circ \text{Lk} \ \sigma \approx S^n \).

Proof (Added in proof). For \(S(\sigma \circ \text{Lk} \ \sigma) = S(\bar{\sigma}) \circ \text{Lk} \ \sigma \).
Theorem 8. Let M be an n-manifold with triangulation T. Let σ be a simplex of the first barycentric subdivision T' of T. Then σ is cellular in M.

Proof. Let τ be the lowest dimensional simplex of T for which $\beta(\tau)$ is a vertex of σ. Obviously $\tau \subseteq \text{Int} \sigma^*$. We shall show that Star $\sigma \subseteq \tau^*$, Star σ formed with respect to T' and τ^*, with respect to T. For any other vertex $\beta(\tau')$ of σ, $\tau' \supseteq \tau$; so if τ^n is an n-dimensional simplex containing $\beta(\tau')$, we have $\tau^n \supseteq \tau$ and hence $\tau^n \subseteq \tau^*$. It now may easily be seen that $\sigma \subseteq \text{Int} \tau^*$.

Again consider the simple subdivision $M = \tau \circ \text{Lk} \tau + R \rightarrow \beta(\tau) \circ (\hat{\tau} \circ \text{Lk} \tau) + R$. We can see that σ is even a subcone, thus a compact starlike set in $\text{Int} (\beta(\tau) \circ (\hat{\tau} \circ \text{Lk} \tau)) = \text{Int} \tau^*$. Since $\text{Int} \tau^* \approx E^n$ and by Theorem 2 σ is pointlike in $\text{Int} \tau^*$, it follows by Theorem 3 of [1] that σ is cellular.

Corollary. The stellar neighborhood of σ with respect to T' is homeomorphic to E^n.

Proof. σ is full in T'.

Theorem 9 (Added in proof). Let M be an n-manifold with triangulation T. If σ is a simplex of the second barycentric subdivision T'' of T then σ^* is cellular in M.

Proof (Added in proof). T' will denote the first barycentric subdivision of T. Suppose σ is a simplex of T''. Let τ be the lowest dimensional simplex of T' whose barycenter $\beta(\tau)$ is a vertex of σ. As before, it follows that $\sigma^* \subseteq \tau^*$. It is also fairly easy to see that each vertex of τ lies in σ^*.

Now let v be the minimal simplex of T whose barycenter $\beta(v)$ is a vertex of τ. We may conclude that v is the minimal simplex of T whose barycenter lies in σ^*. For if $v_1 \in T$ and $\beta(v_1) \in \sigma^*$, denote by σ_1 the simplex of T'' which contains σ and $\beta(v_1)$. Since σ_1 must be n-dimensional let τ_1 be the n-simplex of T' containing σ_1. Inasmuch as $\sigma_1 \supseteq \sigma$, $\tau_1 \supseteq \tau$ and $\beta(\tau) \subseteq \sigma$, it may be seen that $\beta(v_1) \in \tau$. This proves that $v \subseteq v_1$.

Consider the simple subdivision $M = v \circ \text{Lk} v + R \rightarrow \beta(v) \circ P + R$, where $P = \hat{v} \circ \text{Lk} v$. Evidently $\sigma^* \subseteq \beta(v) \circ P$; we shall prove that $\sigma^* \subseteq \text{Int} \beta(v) \circ P$, the latter, of course, being a homeomorph of E^n.

Firstly, it may be established without too much difficulty, by a straightforward induction on n, that if $\sigma^* \subseteq \beta(v)^* \circ P$ with respect to T' then $\sigma^n \cap P \subseteq \dot{v}$. Now suppose $\sigma^n \subset T''$ so that $\sigma^n \supseteq \sigma_1$ and $\sigma^n \cap \dot{v} \neq \emptyset$. Let $\tau^n \in T'$ with $\sigma^n \subseteq \tau^n$ and $\tau_1 = \tau^n \cap \dot{v}$. Then σ^n contains $\beta(\tau_1)$ for
some face τ_0 of τ_1; this in turn necessitates that σ^n contains a vertex v of τ_0. The vertex v must be the barycenter of a face v_0 of τ. Since $v \in \sigma^*$, this contradicts the minimality condition on v proved above.

Finally we show that σ^* is starlike in $\beta(v) \circ P$. It will then be obvious from our previous arguments that σ^* is cellular in M. Let τ^n be any n-simplex of T' which contains σ. By elementary analytic geometry it may be verified that $\sigma^* \cap \tau^n$ is convex in τ^n. (See for example formula (2) on p. 62 of [2].) This completes the proof of the theorem.

REFERENCES

University of Michigan