MINIMAL REGULAR SPACES
MANUEL P. BERRI AND R. H. SORGENFREY

1. Introduction. If \mathcal{P} is a property of topologies, a space $(X, 3)$ is minimal \mathcal{P} if 3 has property \mathcal{P}, but no topology on X which is strictly weaker (= smaller) than 3 has \mathcal{P}. Such spaces have been investigated for the case $\mathcal{P}=$ Hausdorff $[2; 5]$, a well-known result being that while every compact space is minimal Hausdorff, the converse is not true. We consider here the case $\mathcal{P}=$ regular; other properties are discussed by one of the authors in a paper to appear.

Filter-bases on spaces will be used extensively (for definitions not given here, see [1]). A filter-base is open (closed) if its elements are open (closed) sets. A filter-base will be called regular if it is open and is equivalent to a closed filter-base. The name is suggested by the fact that the filter-base of open neighborhoods of a point of a regular space is regular since it is equivalent to the filter-base of closed neighborhoods of that point.

2. Characterizations of minimal regular spaces. We will be concerned with spaces satisfying one or both of the following conditions:

(a) Every regular filter-base which has a unique adherent point is convergent.

(b) Every regular filter-base has an adherent point.

Theorem 1. A regular space which satisfies (a) also satisfies (b).

Proof. Suppose \mathcal{B} is a regular filter-base on the regular space $(X, 3)$ and that \mathcal{B} has no adherent point. Let \mathcal{C} be a closed filter-base equivalent to \mathcal{B}. Fix $p \in X$ and let \mathcal{U} and \mathcal{V} be the filter-bases of open and closed neighborhoods of p, respectively. Since 3 is regular, \mathcal{U} and \mathcal{V} are equivalent. Then $\mathcal{R} = \{ B \cup U : B \in \mathcal{B}, U \in \mathcal{U} \}$ is an open filter-base equivalent to the closed filter-base $\{ C \cup V : C \in \mathcal{C}, V \in \mathcal{V} \}$ and is therefore regular. It is clear that p is the unique adherent point of \mathcal{R} and that \mathcal{R} does not converge to p. This denial of the hypothesis establishes the theorem.

Theorem 2. In order that a regular space be minimal regular, it is necessary and sufficient that it satisfy (a).

Proof. Suppose $(X, 3)$ is regular and that \mathcal{B} is a regular filter-base having the unique adherent point p to which it does not converge.

Presented to the Society, October 30, 1961; received by the editors March 12, 1962.

1 As used in this paper, the condition of regularity includes T_1 separation, i.e., singletons are closed.

454
For each $x \in X$, let $\mathcal{U}(x)$ be the filter-base of \mathcal{O}-open neighborhoods of x and define $\mathcal{U}'(x) = \mathcal{U}(x)$ if $x \neq p$ and $\mathcal{U}'(p) = \{ U \cup B : U \subseteq \mathcal{U}(x), B \subseteq \mathcal{O} \}$. There is a topology \mathcal{T}' on X such that $\mathcal{U}'(x)$ is an open base at x for each $x \in X$. It is clear that \mathcal{T}' is strictly weaker than \mathcal{T} (there is a $U \subseteq \mathcal{U}(p)$ which contains no set of $\mathcal{U}'(p)$ since \mathcal{O} does not converge to p). Moreover, \mathcal{T}' is certainly regular at each $x \neq p$, while regularity at p follows readily from the fact that \mathcal{O} is equivalent to a closed filter-base. Hence \mathcal{T} is not minimal regular.

To establish the sufficiency of the condition, let (X, \mathcal{T}) be a regular space satisfying (a) and let \mathcal{T}' be a regular topology on X which is weaker than \mathcal{T}. For arbitrary $x \in X$ let $\mathcal{U}(x)$ and $\mathcal{U}'(x)$ be the open neighborhood systems of x in the \mathcal{T} and \mathcal{T}' topologies, respectively. The filter-base $\mathcal{U}'(x)$ is \mathcal{T}'-regular and has x as its only adherent point. Since \mathcal{T}' is weaker than \mathcal{T}, $\mathcal{U}'(x)$ is regular and has unique adherent point x in (X, \mathcal{T}). By (a) $\mathcal{U}'(x)$ converges to x in (X, \mathcal{T}). Hence $\mathcal{U}(x)$ must be weaker than $\mathcal{U}'(x)$, and, since the reverse is true, it follows that \mathcal{T} and \mathcal{T}' are identical and that \mathcal{T} is minimal regular.

Remark. The two previous results show that condition (β) is necessary in order that a regular space be minimal regular. Whether it is sufficient is an open question. Theorem 3 below, however, throws some light on the problem.

Lemma. If the subspace X of the regular space Y satisfies (β), then X is closed in Y.

Proof. Suppose $p \in \overline{X} - X$. Let \mathcal{U} and \mathcal{V} be, respectively, the open and closed neighborhood systems of p in Y. Then the filter-base $\mathcal{O} = \{ X \cap U : U \subseteq \mathcal{U} \}$ is open (relative to X), is equivalent to the closed (relative to X) filter-base $\{ X \cap V = V \subseteq \mathcal{V} \}$, and is therefore regular on X. As a filter-base on Y, \mathcal{O} is stronger than \mathcal{U} and hence has no adherent point other than p in Y. It follows that \mathcal{O} has no adherent point at all in X, a contradiction.

Theorem 3. Any completely regular space satisfying (β) is compact and therefore minimal regular.

Proof. Let X be completely regular and satisfy (β) and let Y be its Stone-Čech compactification. The above lemma yields the desired result.

Theorem 4. Any minimal regular subspace of a regular space is closed.

Proof. This is an immediate consequence of the lemma since the subspace must satisfy (β).

Remark. It is easy to see that a subspace of a minimal regular space which is both open and closed is itself minimal regular. The example of the next section shows that a closed subspace of a minimal regular space need not be minimal regular.

3. A minimal regular noncompact space. The example given here is a slight modification of an unpublished one due to Richard Arens of a regular space which is not completely regular. His example has also been used by Hewitt [3] in constructing a regular space on which every continuous real-valued function is constant.

Description of the space $(Z, 3)$. Let J be the set of all integers, ω' the ordinals $\leq \omega$, and Ω' the ordinals $\leq \Omega$ (the first uncountable one). Equip each of these sets with the order topology and consider the space $J \times \omega' \times \Omega' \setminus \{(n, \omega, \Omega): n \in J\}$, the relative product topology being used. To obtain the space Y, make the following identifications and use the quotient topology 3^*: for even n, identify (n, ω, γ) and $(n+1, \omega, \gamma)$; for odd n, identify (n, x, Ω) and $(n+1, x, \Omega)$. We will continue to use the symbols (n, x, γ) for the points of Y, thus $(n, \omega, \gamma) = (n+1, \omega, \gamma)$ for even n. For $n \in J$, let $Q_n = \{(n, x, \gamma): x < \omega, \gamma < \Omega\}$ and $Z_n = Q_n = \{(n, x, \gamma): (x, \gamma) \neq (\omega, \Omega)\}$. Let p and q be points not in Y and topologize $Z = \{p\} \cup \{q\} \cup Y$ by letting an open base at p be all sets of the form

$$V_n(p) = \bigcup \left\{ Z_i: i > n \right\} \cup Q_n \cup \{p\}, \quad n = 1, 2, \ldots,$$

and an open base at q be all sets of the form

$$V_n(q) = \bigcup \left\{ Z_i: i > n \right\} \cup Q_n \cup \{q\}, \quad n = 1, 2, \ldots,$$

which open bases at points of Y are those they had in 3^*. Let the resulting topology on Z be 3.

Properties of the space $(Z, 3)$. 1. $(Z, 3)$ is regular.

Proof. It is easy to see that singletons are closed, and regularity is clear except possibly at p and q. Regularity at p, say, follows from $[V_{n+1}(p)]^{-} \subseteq V_n(p)$.

We will say that a set $S \subseteq Z$ gets into the n-corner if whenever $x_0 < \omega, y_0 < \Omega$, there is a point $(n, x, \gamma) \in S$ for some $x > x_0$ and $y > y_0$.

2. If the open set U gets into the n-corner, then there is an infinite sequence $\{x_i\}$ of distinct finite ordinals such that $(n, x_i, \Omega) \in U$.

Proof. If not, there is an $x_0 < \omega$ such that if $x_0 < x < \omega$, $(n, x, \Omega) \not\in U$ and hence there is a $y_x < \Omega$ such that $(n, x, y) \in U$ for $y_x < y$. Since $\{y_x: x_0 < x < \omega\}$ is countable, its least upper bound, y_0, is less than Ω. Therefore if $x_0 < x < \omega$ and $y_0 < y$, then $(n, x, y) \not\in U$. Since U gets into the n-corner, it must then be that $(n, \omega, \gamma) \in U$ for some $\gamma > y_0$. But
since U is open, there is an x, $x_0<x<\omega$, such that $(n, x, y) \in U$. This contradiction establishes the property.

3. Let U, V, and W be open sets such that $U \subset \overline{U} \subset V \subset \overline{V} \subset W$. Then if U gets into the n-corner, W gets into the $(n-1)$- and $(n+1)$-corners.

Proof for n odd. (The proof for the case n even is similar.) Take $x_0<\omega$, $y_0<\omega$. By property 2, there are infinitely many distinct x_t such that $x_0< x_t<\omega$ and $(n, x_t, \Omega) \in \overline{U}$. Since $(n+1, x_t, \Omega) = (n, x_t, \Omega) \in \overline{U} \subset W$, W gets into the $(n+1)$-corner. Since $(n, x_t, \Omega) \in V$, there exists, for each i, a $y_i<\omega$ such that if $y>y_i$, then $(n, x_t, y) \in V$. Let y' be the least upper bound of the set $\{y_0, y_1, y_2, \cdots \}$. Then for any y, $y'<y<\omega$, $(n, x_t, y) \in V$ for all x_t; hence $(n, \omega, y) = (n-1, \omega, y) \in \overline{V} \subset W$, and W gets into the $(n-1)$-corner.

4. If \mathfrak{B} is a regular filter-base and, for some n, each set of \mathfrak{B} gets into the n-corner, then p and q are adherent points of \mathfrak{B}.

Proof. Let N be a neighborhood of p and $B \in \mathfrak{B}$. There is an integer k such that $Q_k \subset V\alpha(p) \subset N$; let $h = k - n$. Since \mathfrak{B} is regular, there are $2h+1$ sets $U_i \in \mathfrak{B}$ such that $U_1 \subset \underline{U}_1 \subset U_2 \subset \cdots \subset U_{2n+1} = B$.

Since U_1 gets into the n-corner, h applications of property 3 shows that $B = U_{2n+1}$ gets into the $(n+h)\alpha$-corner; i.e., $B \cap Q_k \neq \emptyset$, whence $B \cap N \neq \emptyset$, and p is an adherent point of \mathfrak{B}. The case for q is similar.

5. $(Z, 3)$ is not completely regular and hence not compact.

Proof. Let f be a bounded, real-valued continuous function on Z. For some fixed n and each $y<\omega$, let $g(y) = f(n, \omega, y)$. Then g is continuous, and it is well-known (e.g., [4, p. 167, ex. Q]) that there is a $y_0<\omega$ and a constant c such that $g(y) = c$ for $y>y_0$. It follows that each set of the regular filter-base $\{ \{ p \in Z : |f(p) - c| < \epsilon \} : \epsilon > 0 \}$ gets into the n-corner. Since, by property 4, p and q are adherent points of this filter-base, it is clear that $f(p) = f(q) = c$ and $(Z, 3)$ is not completely regular.

In the proof of the following property we repeatedly use the elementary fact that if \mathfrak{B} is a regular filter-base and $C \in \mathfrak{B}$, then $C = \bigcap B \in \mathfrak{B}$ is a regular filter-base equivalent to \mathfrak{B}. We will call C the C-section of \mathfrak{B}.

6. $(Z, 3)$ is minimal regular.

Proof. Let \mathfrak{B} be a regular filter-base with unique adherent point r. We will show that \mathfrak{B} converges to r; the property will then follow from Theorem 2.

Case 1. $r \neq p, q$. Then some set $C \in \mathfrak{B}$ meets only a finite number of Z_a's. Let C be the C-section of \mathfrak{B}; then there is an integer k such that
each set of C is a subset of $K = \bigcup \{z_n: |n| \leq k\}$. It follows from property 4 that for each n, $|n| \leq k$, there is a set $D_n \subseteq C$ which does not get into the n-corner. Let D be a set of C lying in $\bigcap \{D_n: |n| \leq k\}$; then ordinals $x_0 < \omega$, $y_0 < \Omega$ exist such that D does not meet the open set $W = \{(n, x, y): x > x_0, y > y_0\}$. Hence D, the D-section of C, is a filter-base equivalent to \emptyset, and each of its sets lies in the compact subspace $K - W$ of Z. It is clear that \emptyset, and hence \mathcal{B}, must converge to their unique adherent point r.

Case 2. $r = p$. (The proof for the case $r = q$ is similar.) If \mathcal{B} does not converge to p, there is a neighborhood $V_k(p)$ which contains no set of \mathcal{B}. Since q is not an adherent point of \mathcal{B}, there is an integer h and a set C of \mathcal{B} such that $C \cap Z_n = \emptyset$ for $n < h$. It follows from property 4 that for each n, $h \leq n \leq k$, there is a set D_n in the C-section \mathcal{E} of \mathcal{B} which does not get into the n-corner. Let D be a set of C lying in $\bigcap \{D_n: h \leq n \leq k\}$; then ordinals $x_0 < \omega$ and $y_0 < \Omega$ exist such that D does not meet the set $W = \{(n, x, y): h \leq n \leq k, x > x_0, y > y_0\}$. The D-section \mathcal{E} of C is a filter-base equivalent to \emptyset and each of its sets meets the compact set $F = \bigcup \{Z_n: h \leq n \leq k\} - W$. Hence $\mathcal{E} = \{F \cap E: E \in \mathcal{D}\}$ is a filter-base stronger than \emptyset and each of its sets is contained in F. Since F is compact, \mathcal{E}, and hence \mathcal{B}, must have an adherent point $z \in F$. Since $z \neq p$, a contradiction results.

7. (Z, \mathcal{S}) has a closed subspace which is not minimal regular.

Proof. Let $S = \{(1, x, \Omega): x < \omega\}$. It is clear that S is a closed subset of Z. But, with the relative topology, S is an infinite discrete space, which is certainly not minimal regular.

References

