EMBEDDINGS OF A p-ADIC FIELD AND ITS RESIDUE FIELD IN THEIR POWER SERIES RINGS

NICHOLAS HEEREMA

I. Introduction. Let K denote a p-adic field [5, p. 226, Definition 2] with residue field k. Let R represent the ring of integers of K and let H represent the corresponding place of K.

In this paper we show that every embedding of k in its power series ring $k[[x_1, \ldots, x_n]]$ or $k[[x]]_n$ in n indeterminates is induced by an embedding of K in its power series $K[[Y]]_n$ in n indeterminates.

It follows from this that every automorphism of $k[[X]]_n$ is induced by an automorphism of $K[[Y]]_n$.

Let S be a complete regular local ring which is not ramified and let $M = (u_1, \ldots, u_m)$ be the maximal ideal of S, where u_1, \ldots, u_m is a minimal set of generators of M. If P_i denotes the ideal (u_1, \ldots, u_i) for $i = 1, \ldots, m$ then our concluding result asserts that every automorphism of S/P_i is induced by an automorphism of S. This result is, of course, well known in the case $n = 1$.

We are able to establish the result on induced embeddings by an argument which is much like that used in [4] to show that each derivation on k (into k) is induced by a derivation on K. This is not surprising in view of the close connection between derivations and embeddings in power series rings [2; 3].

We define an embedding of a commutative ring S in a power series ring $S'[[X]]_n$, where S' is a commutative ring containing S, to be an isomorphism θ of S into $S'[[X]]_n$ subject to the following condition. Let ϕ represent the natural mapping $S'[[X]]_n$ onto S'. Then θ has the property that $a = \phi\theta(a)$ for all $a \in S$. If $S' = S$ we call θ simply an embedding of S.

The homomorphism H of R onto k is extended to a homomorphism H' of $R[[Y]]_n$ onto $k[[X]]_n$ by the condition

$$H'\left(\sum_{I \in S^*} a_I Y^I\right) = \sum_{I \in S^*} H(a_I) X^I,$$

where I represents an n-tuple of ordinary non-negative integers i_1, \ldots, i_n, $X^I = X_1^{i_1}X_2^{i_2} \cdots X_n^{i_n}$, and S^* is the set of all such n-tuples. An embedding ϕ of k is induced by an embedding θ of R if for each a in R we have

Presented to the Society, November 17, 1961, under the title Embeddings of a p-adic field; received by the editors May 3, 1962.

1 This research was supported by NSFG-11292 and NSF-G19912.
EMBEDDINGS OF A \mathfrak{p}-ADIC FIELD

575

II. The embedding theorem.

Theorem. Each embedding \varnothing of k is induced by an embedding of R, or, equivalently, by an embedding of K.

Proof. We let k_0 represent the maximal perfect subfield of k. It follows that \varnothing, restricted to k_0, is the identity mapping [3, Lemma 1]. Let K_0 be the \mathfrak{p}-adic subfield of K with residue field k_0 and let θ_0 be the identity mapping on K_0 regarded as an isomorphism of K_0 into $K[[Y]]_n$.

Next we choose a set S of units in R with the property that the set $S = H(S)$ is a \mathfrak{p}-basis for k and we observe in the following way that θ_0 can be extended to an embedding θ of $K_1 = K_0(S)$ into $K[[Y]]_n$ such that condition (1) holds for every integral element a in K_1. The fact that S is a \mathfrak{p}-basis implies that S and \bar{S} are algebraically independent over K_0 and k_0 respectively. Assume that θ_0 has been extended to an integral embedding θ on $\tilde{K} = K(S_1)$ where S_1 is a proper subset of S, such that θ satisfies condition (1) for every integral element a in \tilde{K}. We choose \overline{a} in \bar{S} and not in S. Let $\varnothing(a) = \sum a_i X^i$. Necessarily $a_0, \ldots, a_{n-1} = \overline{a}$. We next choose a_0, \ldots, a_{m-1} in S and a_i in K, for each i in S^*, so that $H(a_i) = a_i$. Finally, the mapping θ is extended to an isomorphism θ^* of $K^* = \tilde{K}(a_0, \ldots, a_m)$ into $K[[Y]]_n$, by the condition $\theta^*(a_0, \ldots, a_m) = \sum a_i X^i$. By construction θ^* is an integral embedding which satisfies condition (1) for every integer in K^*. Thus, by a standard Zorn's lemma argument we conclude that θ_0 can be extended to an integral embedding θ of K_1 into $K[[Y]]_n$, for which condition (1) holds.

In order to extend θ to the desired integral embedding on all of K we proceed as follows. Let U be a set of units in R which contains 1 and has the property that $U = H(U)$ is a basis for k as a linear space over k_1. Then for any positive integer m the set U^m of m powers of the elements in U is also a basis for k over k_1 [4, p. 347].

Let a be in R. The coset $a + (p^m)$ has a representative of the form $\sum a_i u_i^{m^i}$ where the a_i are integral in K_1 and \sum denotes a finite sum. Moreover, the a_i are uniquely determined mod p^m. In the remainder of this paper the coefficients a_i in an expression of the form $\sum a_i u_i^{m^i}$, $u_i \in U$, will be integral in K_1. Let R_m denote the ring $R/(p^m)$, and let $R[[Y]]_{(a,m)}$ represent the ring $R[[Y]]/(p^m, Y_p^m, \ldots, Y_n^m)$. We define a mapping θ_m of R_m into $R[[Y]]_{(a,m)}$ by the following:

$$\theta_m(\sum a_i u_i^{m^i} + (p^m)) = \sum u_i^{m^i} \theta(a_i) + (p^m, Y_p^m, \ldots, Y_n^m).$$
We will show first that \(\theta_m \) is an isomorphism with the property that, for all \(a \in R, \theta_m(a + (p^m)) = a, \mod(Y_1, \cdots, Y_n) \). The \(\theta_m \) determine a limit function which will prove to be the desired embedding of \(R \) in \(R[[Y]]_s \). To this end we have the following preliminaries.

For \(I \) and \(J \) in \(s^* \), we write \(J \leq I \) if each component of \(J \) is less than or equal to the corresponding component of \(I \), \(I + J \) is obtained by component-wise addition. If \(p \) divides each integer in \(I \) we say \(p \) divides \(I \), \((p \divides I) \), and denote the \(n \)-tuple of quotients by \(I/p \). The largest integer in \(I \) is represented by \(|I| \), and \(kI \) represents the \(n \)-tuple obtained by component-wise multiplication of \(I \) by the integer \(k \).

For \(a \) integral in \(K_1 \), \(\bar{a} = \sum a_I Y^I \) where \(a_I \) is in \(R \) for all \(I \) and \(a_0, \ldots, a = a \). Let \(\Pi_I \) be the mapping given by \(\Pi_I(a) = a_I \). Then for all \(a \) and \(b \) integral in \(K_1 \) and all \(I \) in \(s^* \)

(i) \(\Pi_I(a + b) = \Pi_I(a) + \Pi_I(b) \), and

(ii) \(\Pi_I(ab) = \sum_{J \leq I} \Pi_I(a) \Pi_{I-J}(b) \).

The symbol \(\mathfrak{s} \) will represent the nonzero \(n \)-tuples of \(s^* \).

Lemma 1. Let \(a \) be an integral element in \(K_1 \). Then for each \(I \) in \(s \) and \(m > 0 \),

\[(3) \quad \Pi_I(a \tilde{a}^m) = 0, \mod p^m, \quad \text{if } p \divides |I|, \]

\[(4) \quad \Pi_I(a \tilde{a}^m) = [\Pi_{I/p}(a \tilde{a}^{m-1})]^p + p \sum_{J \leq I/p} c_J [\Pi_J(a \tilde{a}^{m-1})]^p + \cdots + p^{m-1} \sum_{J \leq I/p} c_J [\Pi_J(a)]^p, \mod p^m, \text{ if } p \nmid |I|, \]

where the \(c_J \) and \(c_J \) are in \(R \).

Proof. We argue by induction on \(m \).

\[(5) \quad \Pi_I(a \tilde{a}) = \sum_{\{p, I\}} C_{p, r_1, \ldots, r_s} \Pi_{J_1}(a) \cdots \Pi_{J_p}(a), \]

where \([p, I]\) represents the set of all ordered partitions of \(I \) into \(p \) summands from \(s^* \), the integers \(r_1, \cdots, r_s \) are the multiplicities of the distinct \(n \)-tuples in the partition \(J_1, \cdots, J_p \) of \(I \), and \(C_{p, r_1, \ldots, r_s} \) is the indicated multinomial coefficient. If \(p \divides |I| \) then, necessarily, \(p \divides C_{p, r_1, \ldots, r_s} \). Hence \(\Pi_I(a \tilde{a}) = 0, \mod p \). If \(p \nmid |I| \) then the only term in (5) not having \(p \) as a factor is \([\Pi_{I/p}(a)]^p\). Thus the lemma holds for \(m = 1 \). We assume the result for \(j < m \). Again,

\[(6) \quad \Pi_I(a \tilde{a}^{m-1}) = \sum_{\{p, I\}} C_{p, r_1, \ldots, r_s} \Pi_{J_1}(a \tilde{a}^{m-2}) \cdots \Pi_{J_p}(a \tilde{a}^{m-2}). \]
As before, if $p \mid I$, then for each partition J_1, \ldots, J_p in $[p, I]$, $p \mid C_{p,r_1}, \ldots, r_s$ and for some $i, p \mid J_i$. Thus, using the inductive hypothesis, we have $\Pi_I(a^{m^n}) = 0, \mod p^m$.

If $p \mid I$,

$$\Pi_I(a^{m^n}) = [\Pi_{I/p}(a^{m^n})]^p + \sum C_{p,r_1,\ldots, r_s} \Pi_{J_1}(a^{m^{n-1}}) \cdots \Pi_{J_s}(a^{m^{n-1}}).$$

The range of the sum is clear. Each coefficient C_{p,r_1,\ldots, r_s} is divisible by p. If $p \mid J_i$ for some i then by the inductive hypothesis, the term containing $\Pi_{J_i}(a^{m^{n-1}})$ is zero, $\mod p^m$. Thus we have

$$\Pi_I(a^{m^n}) = [\Pi_{I/p}(a^{m^n})]^p + \sum_{I_j \subseteq J \supseteq I/p} c_j \Pi_{J_j}(a^{m^{n-1}}), \mod p^m,$$

for some set of elements c_j in R, where I_0 denotes the n-tuple of zeros. The result now follows by substituting for $\Pi_{I/p}(a^{m^n})$ using relation (4).

By a straightforward induction argument on $m \geq 0$ using Lemma 1 we have

Lemma 2. $\Pi_I(a^{m^{n+1}}) = 0, \mod p^m$, if $0 < |I| < p^{m+1}$.

By definition of the mappings Π_I, $\tilde{\theta}(a) = \sum_{I \in \mathcal{G}} \Pi_I(a) Y^I$. Hence, using Lemma 2 we have,

Lemma 3. For all integers a in K_1,

$$\tilde{\theta}(a^{m^{n+1}}) = a^{m^{n+1}} \mod (p^m, Y^{m_n}, \ldots, Y^{m_1}).$$

Lemma 4. The mapping θ_m is an isomorphism with the property that $\theta_m(a) = a, \mod (Y_1, \ldots, Y_n)$, for all a in R_m.

Proof. It is clear that θ_m is additive. Since for b an integer in K_1, $\tilde{\theta}(b) = b, \mod (Y_1, \ldots, Y_n)$, it follows that for a in R_m, $\theta_m(a) = a, \mod (Y_1, \ldots, Y_n)$. Hence, θ_m is one-to-one. It remains to show that products are preserved.

Let $a = \sum a_i u_i^{m^{n+1}} + (p^m)$ and $b = \sum b_i u_i^{m^{n+1}} + (p^m)$. Then,

$$\theta_m(ab) = \theta_m(\sum a_i b_i u_i^{m^{n+1}} + (p^m)).$$

Now by [4, proof of Lemma 2]

$$u_i^{m^{n+1}} w_j^{m^{n+1}} = \sum_{k=0}^{m-1} p^k \sum_{i,j,k} c_{i,j,k,l}^{m^{n+1}-k} u_j^{m^{n+1}}, \mod p^m,$$

where $s_{i,j,k,l}$ is a rational integer and $c_{i,j,k,l}$ is integral in K_1. Hence,
\[\vartheta_m(ab) = \vartheta_m \left[\sum a_i b_j \sum_{k=0}^{m-1} p^k \sum_{i,j,k,l} c_{i,j,k,l}^p m^{m+1-k} u_{i,j,k,l}^m + (p^m) \right]. \]

Now
\[\vartheta(a \cdot b \cdot p^k s_{i,j,k,l} c_{i,j,k,l}^{p^{(m^2+1)-k}}) = \vartheta(a) \vartheta(b) \cdot p^k s_{i,j,k,l} c_{i,j,k,l}^{p^{(m^2+1)-k}}. \]

If \(k \leq m-1 \), then \(2m^2+1-k > m^2+1 \). Thus, by Lemma 3,
\[\vartheta(a \cdot b \cdot p^k s_{i,j,k,l} c_{i,j,k,l}^{p^{(m^2+1)-k}}) = \vartheta(a) \vartheta(b) \cdot p^k s_{i,j,k,l} c_{i,j,k,l}^{p^{(m^2+1)-k}}, \text{ mod } (p^m, Y_{p^m}, \ldots, Y_{p^m}). \]

Hence,
\[\vartheta_m(ab) = \sum \vartheta(a) \vartheta(b) \cdot u_{i,j,k,l}^{p^{m+1}} + (p^m, Y_{p^m}, \ldots, Y_{p^m}), \]
or,
\[\vartheta_m(ab) = \vartheta_m(a) \vartheta_m(b). \]

Regarding \(\vartheta(a+(p^m)) \) as a set of elements in \(R[[Y]] \) we have

Lemma 5. \(\vartheta_m(a+(p^m)) \supseteq \vartheta_{m+1}(a+(p^{m+1})) \) for all integers \(a \) in \(K \).

Proof. For each \(u_i \) in \(U \), \(u_i^{p^{m+1}} = \sum c_i u_j \), mod \(p \). Hence, \((u_i^{p^{m+1}})_{p^{m+1}} = (\sum c_i u_j)^{p^{m+1}} \), mod \(p^{2m+1} \). By [4, Lemma 1] this becomes
\[u_i^{p^{2m+1}} = \sum_{i=0}^{2m^2} \sum_{i,j,k,l} c_{i,j,k,l}^{p^{m+1}+1} u_{i,j,k,l}^m, \text{ mod } p^{2m+1}. \]

Thus we have, for \(a \) in \(R \),
\[a + (p^{m+1}) = \sum b_r u_r^{p^{(m^2+1)+1}} + (p^{m+1}), \]
\[= \sum b_r \sum_{i=0}^{2m^2} \sum_{i,j,k,l} c_{i,j,k,l}^{p^{m^2+1}+1} u_{i,j,k,l} + (p^{m+1}). \]

Hence,
\[\vartheta_m[a + (p^m)] \]
\[= \sum \vartheta(b_r) \sum_{i=0}^{2m^2} \sum_{i,j,k,l} c_{i,j,k,l}^{p^{m^2+1}+1} u_{i,j,k,l} + (p^m, Y_{p^m}, \ldots, Y_{p^m}) \]
\[= \sum \vartheta(b_r) u_r^{p^{2m+1}} + (p^m, Y_{p^m}, \ldots, Y_{p^m}). \]

Also,
The lemma follows.

We now let \(\theta(a) = \bigcap_{m=1}^{n} \theta_m[a + (p^m)] \) for each \(a \) in \(R \). By Lemma 5, \(\theta \) is a well-defined mapping of \(R \) into \(R[[Y]]_n \). It preserves sums and products \(\mod (p^m, Y_m, \ldots, Y_n) \) for all \(m \), hence is a homomorphism. It has the property that \(\theta(a) = a \mod (Y_1, \ldots, Y_m) \), by virtue of the fact that \(\theta_m(a) = a \mod (Y_1, \ldots, Y_n) \), for all \(m \). Thus \(\theta \) is an isomorphism and hence an embedding of \(R \) in \(R[[Y]]_n \).

In order to show that \(\theta \) coincides with \(\theta \) on \(K_1 \) we choose an integral element \(a \) in \(K_1 \). Then, one being in \(U \), we have

\[
\theta \big[a + (p^m) \big] = \theta(a) + (p^m, Y_1, \ldots, Y_n)
\]

and thus

\[
\theta(a) = \bigcap_{m=1}^{n} \theta_m[a + (p^m)] = \theta(a).
\]

Finally we note that \(\theta \) induces an embedding \(\sigma' \) on \(k \) which coincides with \(\sigma \) on \(k_1 \). However, since \(k_1 \) contains a \(p \)-basis for \(k \), and an embedding on \(k \) is uniquely determined by its action on a \(p \)-basis \([3, \text{Theorem 1}]\) it follows that \(\sigma' = \sigma \) and the theorem is proved.

A set \(\{ \Pi_I \} \) of mappings of a ring \(S \) into \(S \) is an embedding sequence on \(S \) if the conditions (i) and (ii), preceding Lemma 1, obtain for all \(I \). The correspondence between embeddings of \(S \) and embedding sequences on \(S \), as indicated by the paragraph preceding Lemma 1, leads to the following extension of the theorem which states that every derivation on \(k \) is induced by a derivation on \(R \) \([4, \text{Theorem 1}]\).

Corollary 1. Each embedding sequence \(\{ \tau_I \} \) on \(k \) is induced by an embedding sequence \(\{ \Pi_I \} \) on \(R \). That is, for all \(a \) in \(R \) and \(I \) in \(\mathcal{S} \), \(H \Pi_I(a) = \tau_I H(a) \).

An application. Let \(\Phi \) denote an automorphism on \(R[[Y]]_n \). The ideal \((p) \) is invariant under \(\Phi \), hence \(\Phi \) induces, via \(H' \), an automorphism \(\phi \) on \(k[[X]]_n \). Let \(G \) represent the group of automorphisms of \(R[[X]]_n \), and \(G_0 \) the “inertial” subgroup of \(\alpha \) in \(G \) such that for all \(x \) in \(R[[X]]_n \), \(\alpha(x) \equiv x \mod p \). Then we have

Theorem 2. Every automorphism on \(k[[X]]_n \) is induced by an automorphism on \(R[[Y]]_n \). Moreover, the group of automorphisms of \(k[[X]]_n \) is isomorphic to \(G/G_0 \).

Proof. Let \(\phi \) be an automorphism on \(k[[X]]_n \). Let \(\phi_0 \) denote the
restriction of ϕ to k. Then for a in k $\phi_0(a) = \sum_{I \in I^*} a_I X^I$. The mapping $a \rightarrow a_0, \ldots, a_n$ is an automorphism Φ_0 on k which by a well known theorem is induced via H by an automorphism Φ' on R. Clearly $\phi_0 = \phi' \phi_0'$ where ϕ' is the embedding mapping $a_0, \ldots, a_n \rightarrow \sum_{I \in I^*} a_I X^I$ where again $\phi_0(a) = \sum_{I \in I^*} a_I X^I$. Hence, by Theorem 1, there is an embedding mapping Φ' on R such that $\Phi_0 = \Phi' \Phi_0'$ induces ϕ_0. We extend Φ_0 to an automorphism on $R[[X]]$ in the natural way, i.e., let $\Phi(Y) = \sum_{I \in I^*} a_{i,I} Y^I$ where the $a_{i,I}$ are so chosen that $\phi(X_i) = \sum_{I \in I^*} H(a_{i,I}) X^I$. The fact that ϕ is an automorphism and the manner in which the $\Phi(Y_i)$ are chosen assure that the endomorphism of $R[[X]]$, Φ determined by extending Φ_0 to all of $R[[X]]$ in the indicated manner is in fact an automorphism which induces ϕ. The remaining statement of the theorem is obvious.

Let S represent a complete regular local ring which is not ramified and let u_1, \ldots, u_n be a minimal basis for the maximal ideal M of S. I. S. Cohen [1] has shown that S is isomorphic to a power series ring in n-indeterminates over a field under a map which takes u_i into the ith indeterminate or, in the unequal characteristic case S is isomorphic to $R[[X]]$ for a suitable unramified complete discrete valuation ring R under a map which takes u_1 (say) into p and u_i into X_{i-1} for $i = 2, \ldots, n$.

Theorem 2 asserts that in the latter case every automorphism of S/P_1 where $P_1 = (u_1)$ is induced by an automorphism of S. The remaining cases which arise in the proof of the following corollary are immediate.

Corollary 2. Let S be a complete regular local ring which is not ramified and let u_1, \ldots, u_n be a minimal basis for the maximal ideal M of S. If P_i denotes the ideal generated by u_1, \ldots, u_i ($i = 1, \ldots, n$) then every automorphism of S/P_i is induced by an automorphism of S.

References

Florida State University