1. Introduction. A linear topological space A satisfies Mazur's theorem provided every sequentially continuous linear functional on A is continuous. There have been a number of investigations of conditions on a space A of real valued functions on a set X in order that A, with the topology of pointwise convergence on X, should satisfy Mazur's theorem. S. Mazur opened the question for spaces $A = C(X)$ and gave a strong theorem [3] whose statement is a little too complicated to give here. The fact that Mazur's theorem always holds for $C(X)$ if X is compact seems first to have been proved by V. Pták in 1956 (see [2]); the first publication seems to be in [4, Theorem C and footnote 8].

A linear space of functions A on a set X determines a uniform structure on X. Relative to this structure X has a completion, \hat{X}. As is well known, a linear functional on A which is continuous relative to the weak topology is representable in X, i.e., a finite linear combination of evaluations at points of X.

In this paper we split the problem of Mazur's theorem into two parts as follows. (1) For which spaces A is every sequentially continuous linear functional on A representable in \hat{X}? (2) Which points p of \hat{X} yield sequentially continuous linear functionals? We give three theorems, all assuming that A is closed under certain operations. The weakest assumptions are, alternatively, that A is closed under the lattice operations $f \vee g, f \wedge g$, and the bounding operations $(f \wedge n) \vee -n$, or that A is closed under composition with real entire functions vanishing at 0; either assumption takes care of problem (1). For (2) we assume also that A contains the constant functions; then the points p in question are those for which every countable set of functions in A vanishing at p has a common zero in X. Finally, replacing the entire functions with C^∞ functions, we show that if every function locally belonging to A belongs to A then evaluation at any point of \hat{X} is sequentially continuous.

We remark that examples in [2] show that some linear subspaces of $C(X)$ may admit sequentially continuous linear functionals which are not representable in \hat{X}; also, that the two papers by Isbell and Thomas, respectively, which are cited in [2], are combined in this paper.

Received by the editors May 5, 1962.
2. Theorems. We say A is lattice-closed if A is closed under the two unary operations $|f|$, $(f \wedge 1) \vee -1$; since we are also assuming A is a linear space, it is closed under $f \vee g$, $f \wedge g$, and $(f \wedge n) \vee -n$ as well. We say A is analytically closed if it is closed under all the unary operations $h \circ f$, where h is an entire function real on the real line and 0 at 0. A is locally determined if every function defined on X which agrees with some function in A on a neighborhood of each point belongs to A. We assume for convenience that A separates points on X.

The entire functions to be used below are as follows: Functions α_n within $1/n$ of $|x|$ on $[-n, n]$ (these may be polynomials); functions β_n within $1/n$ of $(x \wedge n) \vee -n$ on the whole line; the square function $g(x) = x^2$; a function h with $h(0) = h(+\infty) = 0 \neq h(-1)$. The existence of the β_n follows from Carleman's approximation theorem [1].

We use a special case of a lemma of H. H. Corson (see [2]); if A and B are linear spaces of functions on a set X, and A is a uniformly dense subset of B, then every sequentially continuous linear functional on A in the weak topology has a sequentially continuous extension over B.

Theorem 1. If A is (i) lattice-closed or (ii) analytically closed, then every sequentially continuous linear functional on A is representable in X.

Proof. Let A^* be the subspace of A consisting of all the bounded functions. A^* determines a uniform structure on X and a compact completion \bar{X}; so we may regard A^* as contained in $C(\bar{X})$. Either hypothesis implies (using the functions α_n) that the closure of A^* in the norm topology is a lattice. Therefore it is either $C(\bar{X})$ or a closed hyperplane consisting of all functions vanishing at a point.

Then for any sequentially continuous functional ϕ on A, the restriction $\phi|A^*$ has at least one sequentially continuous extension over $C(\bar{X})$ in the topology of pointwise convergence on X. Since the topology of pointwise convergence on \bar{X} is finer, it follows from Pták's theorem [2; 4] that $\phi|A^*$ is representable in \bar{X}. To conclude, it suffices to show that if ψ is a sequentially continuous linear functional on A and p is a point of \bar{X} such that $\psi(f) = f(p)$ for all f in A^*, then there is a net of points x_λ of X such that $f(x_\lambda)$ converges to $\psi(f)$ for all f in A. (That is, the "good" points of \bar{X} are points of \hat{X}.)

For this we take any net $\{x_\lambda\}$ converging to p in \bar{X}, and we consider the functions f_n defined (case (i)) as $(f \wedge n) \vee -n$, or (case (ii)) as $\beta_n \circ f$. For any positive ϵ, choose an index $m > 1/\epsilon$ such that $m - 1/m > |\psi(f)| + \epsilon$, and $|\psi(f_m) - \psi(f)| < \epsilon$. The numbers $f_m(x_\lambda)$ converge to $\psi(f_m)$.
so they are finally within ε of $\psi(f)$. In particular $|f_n(x) - f(x)| < m - 1/m$, finally in λ. Hence for these λ, $|f_n(x) - f(x)| < 1/m$. Thus $|f(x) - \psi(f)| < \varepsilon + 1/m < 2\varepsilon$. Since ε is arbitrary, this proves $f(x) \to \psi(f)$, as was to be shown.

Theorem 2. Let A be as in Theorem 1 and contain the constants, and let p be a point of \hat{X}. Then evaluation at p is sequentially continuous on A if and only if every sequence in A vanishing identically at p vanishes identically at some point of X.

Proof. Assume (ii) that A is analytically closed, and suppose \{f_n\} is a sequence vanishing at p but, for each x in X, some $f_n(x) \neq 0$. Then defining g_n as f_n^2, we have $g_n(p) = 0$ but $g_n \to +\infty$ on X. If A contains the constants, define $h_n = h \circ (g_n - 1)$, where $h(0) = h(\infty) = 0$, $h(-1) \neq 0$. Then $h_n \to 0$ on X but $h_n(p) = h(-1)$; so evaluation at p is not sequentially continuous.

Conversely, if evaluation at p is not sequentially continuous, we may pick a sequence of non-negative functions f_n converging to 0 on X but with $f_n(p) = 1$ for all n. Setting $j_n(x) = 1 - f_n(x)$, we have a sequence all vanishing at p but not all vanishing at any point of X.

For case (i), we simply use $|x|$ instead of x^2 and $x \wedge 0$ instead of h.

Theorem 3. If A is locally determined and (i) lattice-closed or (ii) closed under composition with real C^ω functions vanishing at 0, then evaluation at each point of \hat{X} is sequentially continuous.

Proof. We show first that the constants can be adjoined to A, and the hypotheses preserved, without changing \hat{X}; in fact we need only take the functions $f + k, f$ in A, k constant. Since A separates points on X, there is at most one point x_0 at which all functions in A vanish. Suppose g is a function on X which locally has the form $f_n + k_n$, for various f_n in A and various constants k_n. If $g = f_0 + k_0$ near x_0, then $g - k_0$ agrees with a function in A near x_0, and also everywhere else; for at any other point x of X there is a function in A taking a nonzero value and, by (i) or (ii), a function in A taking a nonzero constant value near x. Thus the space of all $f + k$ is locally determined. Entirely similar arguments show that it retains property (i) or (ii). So we may assume A already contains the constants.

Suppose for some p in \hat{X} that evaluation at p is not sequentially continuous. As in the proof of Theorem 2, there is a sequence of non-negative functions f_n in A, each vanishing at p, with $f_n(x)$ forming an unbounded increasing sequence for each x in X. Let g be a non-negative, real, C^ω function vanishing on $(-\infty, 1/2]$ and identically 1 on $[1, \infty)$, and consider any x in X. Near x almost all $f_n \geq 1$, hence
the equation \(f(x) = \sum (1 - \text{gof}_n(x)) \) defines a function which, near any \(x \) in \(X \), is a finite sum of functions in \(A \) and therefore is in \(A \).

On the other hand \(f \) cannot be extended over \(p \), for near \(p \) arbitrarily many \(\text{gof}_n \) are zero and \(f \) is arbitrarily large. The contradiction establishes the theorem.

REFERENCES

UNIVERSITY OF WASHINGTON AND
UNIVERSITY OF CALIFORNIA, RIVERSIDE