Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Semi-homogeneous functions

Authors: Louis V. Quintas and Fred Supnick
Journal: Proc. Amer. Math. Soc. 14 (1963), 620-625
MSC: Primary 39.30
MathSciNet review: 0155117
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] The special case $ p(a) = a\;(a \in A \subset R)$ was first considered by the authors and the results announced in Abstract 577-8, Notices Amer. Math. Soc. 8 (1961), 51.
  • [2] If $ 0 \in A$ and $ p \equiv 1$, then $ C(1,A)$ is the set of all constant functions. If $ 0 \ni A$, A is not null, and $ p \equiv 1$ on $ {A^\ast}$, then $ C(1,A)$ is the set of all functions which are constant on the cosets of $ {R^\ast}/{A^\ast}$ and $ f(0)$ is an arbitrary constant.
  • [3] Georg Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: 𝑓(𝑥+𝑦)=𝑓(𝑥)+𝑓(𝑦), Math. Ann. 60 (1905), no. 3, 459–462 (German). MR 1511317, 10.1007/BF01457624
  • [4] By a decomposition of a set X we mean a disjoint family of subsets of X whose union is X.
  • [5] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
  • [6] H. Steinhaus, A new property of G. Cantor's set, Wektor 7 (1917). (Polish) See also, J. F. Randolph, Distances between points of the Cantor set, Amer. Math. Monthly 47 (1940), 549.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39.30

Retrieve articles in all journals with MSC: 39.30

Additional Information

Article copyright: © Copyright 1963 American Mathematical Society