BOUNDS FOR THE SOLUTIONS OF A CLASS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

ZEEV NEHARI

1. Let $\Delta = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}$ denote the n-dimensional Laplace operator and let the symbols D_r and S_r stand for the open sphere $x_1 + \cdots + x_n < r^2$ ($r > 0$) and its boundary $x_1 + \cdots + x_n^2 = r^2$, respectively. We are concerned here with functions $u = u(P)$ ($P \in D_r$) which are of class C^2 in D_r and satisfy there the differential equation

$$\Delta u = f(u),$$

or, more generally, the differential inequality

$$\Delta u \geq f(u).$$

In the literature on the subject [1; 2; 3; 5; 7; 8], two closely related problems are investigated:

(a) What are the conditions to be imposed on the function $f(u)$ in order to guarantee the existence of a bound $\phi(r) = \phi(r, R; f)$ such that

$$u(P) \leq \phi(r, R; f)$$

for $P \in S_r$ if u satisfies (2) in a region D_R with $R > r$?

(b) Under what conditions on $f(u)$ will (2) have no solutions which are of class C^2 in the entire n-space?

Clearly, the nonexistence of such solutions is assured whenever it can be shown that $\phi(0, R; f) \to -\infty$ for $R \to \infty$.

The most general conditions on $f(u)$ for which the existence of such bounds for the solutions of (2) have been established are [3; 5]: $f(u) > 0$, $f'(u) \geq 0$ for $-\infty < u < \infty$,

$$\int_0^\infty \left[\int_0^u f(t) dt \right]^{1/2} du < \infty.$$

In fact, if $f(u) > 0$ and $f'(u) \geq 0$, condition (4) is both necessary and sufficient. It was also shown in [3] and [5] that the problem $u(P) = \max$ is solved by a spherically symmetric solution $\phi(r)$ of (1) for which $\phi(r) \to \infty$ for $r \to R$, i.e., by a solution of the ordinary differential equation
(5) \[\phi''(r) + \frac{n-1}{r} \phi'(r) = f(\phi) \]

for which \(\phi'(0) = 0 \) and \(\phi(r) \to \infty \) for \(r \to R \). In those cases in which this solution can be found explicitly it is thus possible to determine the exact upper bound (3). An example is the two-dimensional equation \(\Delta u = e^u \), which has the well-known solution

\[u = 2 \log \frac{\sqrt{8R}}{R^2 - r^2} . \]

It was pointed out by Osserman [5] that an upper bound for \(u(P) \) is given by any spherically symmetric function \(v \) of class \(C^2 \) which satisfies the differential inequality

(6) \[\Delta v \leq f(v) \]

and tends to \(\infty \) as \(r \to R \). We shall here use this remark to find explicit upper bounds for certain classes of functions \(f \). The following statement also gives a lower bound for \(\max u(P) \), which is obtained with the help of a suitable function satisfying the inequality (2).

Theorem I. Let \(f(u) \) be a positive, nondecreasing, differentiable function in \((-\infty, \infty) \), for which

\[\int_u^\infty \frac{dt}{f(t)} \] \hspace{1cm} (\(u > -\infty \))

exists, and for which

(7) \[[f(u)]^{1+\lambda} \int_u^\infty \frac{dt}{f(t)} \]

is a nondecreasing function of \(u \) for some non-negative \(\lambda \). If

(8) \[\phi(r) = \sup_{P \in D_r} u(P) , \]

where \(u(P) \) ranges over all functions of class \(C^2 \) in \(D \), which satisfy (2), then

(9) \[\frac{c(\lambda)(R^2 - r^2)^2}{R^2} \leq \int_{\phi(r)}^\infty \frac{dt}{f(t)} \leq \frac{R^2 - r^2}{2n} , \]

where

(10) \[c(\lambda) = \frac{1}{4n} \] \hspace{1cm} (\(4\lambda \leq n - 2 \))
and

\[c(\lambda) = \frac{1}{8(2\lambda + 1)} \quad (4\lambda > n - 2). \]

The left-hand inequality (9) (which yields the upper bound for \(\phi(r) \)) is sharp in the sense that for each number of dimensions \(n (n \geq 2) \), there exists an equation (1) with a spherically symmetric solution \(\phi(r) \) for which the sign of equality holds.

The condition that (7) be a nondecreasing function of \(u \) is equivalent to the inequality

\[f'(u) \int_{u}^{\infty} \frac{dt}{f(t)} \leq 1 + \lambda. \]

It is worth noting that this inequality is always satisfied, for \(\lambda = 0 \), if \(\log f(u) \) is a convex function of \(u \). Indeed, since \(f'/f \) is in this case a nondecreasing function of \(u \), we have

\[\frac{1}{f(u)} = \int_{u}^{\infty} \frac{f'(t)}{f^2(t)} dt \geq \frac{f'(u)}{f(u)} \int_{u}^{\infty} \frac{dt}{f(t)}, \]

and the assertion follows. This implies the following special result.

If \(\log f(u) \) is a convex nondecreasing function in \((-\infty, \infty)\), and \(\phi(r) \) is defined as before, then

\[\frac{(R^2 - r^2)^2}{4nR^2} \leq \int_{\phi(r)}^{\infty} \frac{dt}{f(t)} \leq \frac{R^2 - r^2}{2n}. \]

In particular,

\[\frac{R^2}{4n} \leq \int_{\phi(0)}^{\infty} \frac{dt}{f(t)} \leq \frac{R^2}{2n}. \]

In the case of a solution \(u \) of

\[\Delta u = e^u \]

which is regular in \(D_R \), (13) shows that

\[\log \frac{2n}{R^2 - r^2} \leq \phi(r) \leq 2 \log \frac{2\sqrt{nR}}{R^2 - r^2} \]

and, for \(r = 0 \),

\[2 \log \frac{\sqrt{(2n)}}{R} \leq \phi(0) \leq 2 \log \frac{2\sqrt{n}}{R}. \]
As already mentioned, the right-hand inequality (15) becomes an equality in the two-dimensional case. For \(n \geq 3 \), no explicit solutions of (14) are known. However, it follows from the fact that the substitution of \(\rho r \) for \(r \) and \(u - 2 \log \rho \) for \(u \) \((\rho > 0)\) transforms the equation into itself, that

\[
\phi(0) = 2 \log \frac{K_n}{R},
\]

where \(K_n \) is a constant. (16) shows that \(\sqrt{(2n)} \leq K_n \leq 2 \sqrt{n} \). For \(n = 3 \), an improved lower bound for \(\phi(0) \) can be obtained from the observation that the 3-sphere of radius \(R \) is contained in the right circular cylinder of the same radius. Hence, \(K_3 < K_2 \), and thus \(2\sqrt{2} < K_3 < 2\sqrt{3} \).

2. Turning now to the proof of the left-hand inequality (9), we consider the function \(v = v(r) \) defined by

\[
\frac{c}{R^2} (R^2 - r^2)^{2} = \int_{\nu}^{\infty} \frac{dt}{f(t)}.
\]

We evidently have \(v'(0) = 0 \), and \(v(r) \) increases to \(\infty \) as \(r \to R \). If we can show that \(v \) satisfies the differential inequality (6), it will therefore follow that \(\phi(r) \leq v(r) \), and this will establish the left-hand inequality (9). To verify (6), we write \(x \) for any of the variables \(x_1, \ldots, x_n \), and we differentiate (17) twice with respect to \(x \). This yields

\[
-\frac{4c}{R^2} (R^2 - r^2) = -\frac{v_x}{f(v)},
\]

\[
-\frac{4c}{R^2} (R^2 - r^2) + \frac{8c x^2}{R^2} = -\frac{v_{xx}}{f(v)} + \frac{v_x f'(v)}{f^2(v)}
\]

\[
= -\frac{v_{xx}}{f(v)} + \frac{16c^2 x^2}{R^4} (R^2 - r^2)^2 f'(v).
\]

Summing over all the \(x \), we obtain

\[
-\frac{4cn}{R^2} (R^2 - r^2) + \frac{8cr^2}{R^2} = -\frac{\Delta v}{f(v)} + \frac{16c^2 r^2}{R^4} (R^2 - r^2)^2 f'(v),
\]

or, in view of (17),

\[
\frac{\Delta v}{f(v)} = \frac{16c^2 r^2}{R^2} f'(v) \int_{\nu}^{\infty} \frac{dt}{f(t)} + \frac{4nc}{R^2} (R^2 - r^2) - \frac{8cr^2}{R^2}.
\]
Condition (12) therefore leads to the inequality

\[
\frac{\Delta v}{f(v)} \leq 4c \left[n - \frac{r^2}{R^2} (n - 2 - 4\lambda) \right].
\]

If \(4\lambda \leq n - 2\), it follows that \(\Delta v \leq 4ncf(v)\), and \(v\) will satisfy (6) if \(c\) is given the value (10). If \(4\lambda > n - 2\), the maximum of the right-hand side of (19) (for \(0 \leq r \leq R\)) is attained for \(r = R\), and the value (11) for \(c\) again leads to a function for which (6) holds.

The sign of equality in (9) will hold if \(v\) is a solution of \(\Delta v = f(v)\). Since (19) was obtained from (18) by the use of the inequality (12), this is possible only if (12) becomes an equality. This will occur if

\[
f(u) = u^{1+1/\lambda}, \quad \lambda > 0,
\]

and, for \(\lambda = 0\), if

\[
f(u) = e^u.
\]

Furthermore, the right-hand side of (19) will be equal to the constant 1 only if the coefficient of \(r^2\) vanishes (and, of course, if \(c\) is chosen in accordance with (10)). We thus must have \(4\lambda = n - 2\). Hence, the left-hand inequality (9) will become an equality in the case of the equation

\[
\Delta u = u^{(n+2)/(n-2)}, \quad n \geq 3,
\]

and, if \(n = 2\), the equation (14). The solution of (20) obtained in this way is easily confirmed to be of the form

\[
\begin{align*}
u &= \left[\frac{R \sqrt{(n(n - 2))}}{R^2 - r^2} \right]^{8/(n-2)}.
\end{align*}
\]

This, incidentally, seems to be the only \(n\)-dimensional equation of the form \(\Delta u = u^k\), \(k > 1\), for which a solution can be obtained in terms of elementary functions.

It should be remarked here that, strictly speaking, the equation \(\Delta u = u^k\) is not covered by Theorem I, since the conditions on \(f(u)\) are satisfied only for \(u > 0\). It is, however, clear that the left-hand inequality (9) will remain valid for solutions of this equation which are positive in \(D_R\). It is also possible to give a more general version of Theorem I which applies to cases in which the hypotheses on \(f(u)\) are satisfied only for \(u > \alpha\), where \(\alpha\) is a given number. Before we formulate this generalization, we prove the right-hand inequality (9).
The function $w = w_\rho(r)$ defined by
\[
\frac{\rho^2 - r^2}{2n} = \int_{\infty}^{\infty} \frac{dt}{f(t)}, \quad \rho > R,
\]
is of class C^2 in D_R, and it satisfies the differential inequality (2). Indeed, differentiating with respect to $x = x_k$, we obtain
\[
- \frac{x}{n} = - \frac{w_x}{f(w)},
\]
\[
- \frac{1}{n} = - \frac{w_{xx}}{f(w)} + \frac{w^2 f'(w)}{f^2(w)}
\]
\[
= - \frac{w_{xx}}{f(w)} + \frac{x^2}{n^2} f'(w),
\]
and, summing over all the x_k, we obtain
\[
\frac{\Delta w}{f(w)} = 1 + \frac{r^2}{n^2} f'(w).
\]
Since $f'(w) \geq 0$, it follows that $\Delta w \geq f(w)$, and thus, in view of the results quoted above, $w(r) \leq \phi(r)$. Since ρ may be taken arbitrarily close to R, this establishes the right-hand inequality (9). It may also be noted that the only assumption used was $f'(w) \geq 0$; this estimate is therefore valid in the most general case in which the existence of $\phi(r)$ was proved in [3] and [5].

3. We now state the more general version of Theorem I.

Theorem II. Let $f(u)$ be continuous in $(-\infty, \infty)$, but satisfy the other hypotheses of Theorem I only for $u > a$, where a is a given number; furthermore, let
\[
\int_{-\infty}^{\infty} \frac{dt}{f(t)} = \infty.
\]
If u is a function of class C^2 in D_r, satisfying the inequality (2), and if $P \in S_r (r < R)$, then either $u(P) \leq \alpha$ or, if $u = u(P) > \alpha$,
\[
\frac{c(\lambda)}{R^2} (R^2 - r^2)^2 \leq \int_{-\infty}^{\infty} \frac{dt}{f(t)}.
\]
The proof is again based on the fact that the function v defined in (17) tends to ∞ for $r \to R$ and satisfies the inequality (6). Condition
(21) guarantees that this definition is meaningful for all given values of R and all r in $[0, R)$. The fact that $u \leq v$, if u satisfies (2), now follows by a slight modification of the argument used in [5]. Since $\Delta v \leq f(v)$, we have

$$\Delta(u - v) \geq f(u) - f(v).$$

Suppose there exists a nonempty set T in D_R on which $u > v$. Since $v > \alpha$, we necessarily have $u > \alpha$ on T, and it follows from our assumptions that $f(u) \geq f(v)$ on this set. By (23), $u - v$ is therefore subharmonic on T. We may assume that u is of class C^2 on $D_R + S_R$; this assumption can then be removed by a standard argument. Since $v \to \infty$ for $r \to R$, we have $u - v \to -\infty$ for $r \to R$, and it follows that the boundary B of T is in D_R. Hence, $u - v = 0$ on B, which is absurd, since $u - v$ is positive and subharmonic on T. The set T is thus empty, and we must have $u \leq v$ throughout D_R. This proves (22).

An immediate consequence of Theorem II is the following result concerning the nonexistence of certain types of entire solutions.

Theorem III. If $f(u)$ is subject to the hypotheses of Theorem II, and if there exists a function u satisfying (2) which is of class C^2 in the entire space, then

$$u(P) \leq \alpha$$

for all P.

Indeed, suppose that $u(P) > \alpha$ for some point P. Since (2) remains unchanged under a translation of the coordinate system, we may take P to be the origin. It follows therefore from (22) that

$$c(\lambda) R^2 \leq \int_{u(P)}^\infty \frac{dt}{f(t)},$$

and this produces a contradiction if R is taken large enough.

That entire solutions satisfying (24) may indeed exist is shown by the equation $\Delta u = u^{k+1}$, where k is a positive integer, which satisfies all the assumptions for $\alpha = 0$, and which has the trivial entire solution $u \equiv 0$. A nontrivial example is given by the equation

$$\Delta u = u^2 + u$$

in three dimensions, for which $\alpha = 0$, and which is known to possess a negative entire solution [4; 6].

As a final example, we mention the equation $\Delta u = u^{2k+1}$, where k is
a positive integer. Since the equation remains unchanged if \(u \) is replaced by \(-u \), it follows from Theorem III that, except for the trivial solution \(u = 0 \), the equation has no entire solutions.

References

5. R. Osserman, On the inequality \(\Delta u \geq f(u) \), Pacific J. Math. 7 (1957), 1641–1647.
8. H. Wittich, Ganze Lösungen der Differentialgleichung \(\Delta u = e^u \), Math. Z. 49 (1943/44), 579–582.

Carnegie Institute of Technology