COLUMN SEQUENCES IN HAUSDORFF MATRICES

J. D. BUCKHOLTZ

Corresponding to each sequence \(d \) of complex numbers, the Hausdorff matrix \(H = H(d) \) is given by

\[
H_{n,k} = \begin{cases}
0 & \text{if } n < k, \\
\binom{n}{k} \Delta^{n-k} d_k & \text{if } n \geq k,
\end{cases}
\]

For convenience, we shall denote the \(k \)th column sequence by \(h^{(k)} \), i.e., \(h^{(k)}_n = H_{n,k}, \ n = 0, 1, \ldots \). For each \(k \geq 1 \), \(C^k \) will denote the \(k \)th power of the Cesàro matrix \((C, 1)\). We shall make use of the fact that, regarded as summability methods, \(C^k \) and \((C, k)\) are equivalent \([1, \text{p. 103}]\). If the \(C^k \) transform (and consequently the \((C, k)\) transform) of a sequence \(s \) has limit \(x \), we shall abbreviate this by \(s_n \rightarrow x (C, k) \).

For Hausdorff matrices which satisfy the condition

\[
\sum_{k=0}^{n} |H_{n,k}| \leq M \quad (M \text{ independent of } n),
\]

it is well known \([1, \text{p. 255}]\) that \(h^{(0)} \) converges and that every other column sequence converges to zero. The purpose of this note is to obtain a weaker form of this result for all Hausdorff matrices for which \(h^{(0)} \) converges.

Theorem. If \(H \) is a Hausdorff matrix and \(h^{(0)} \) converges, then \(h^{(k)} \rightarrow 0 \ (C, k) \) for every positive integer \(k \).

Proof. The proof depends mainly on the sequence identity

\[
C h^{(k)} = C h^{(k-1)} - \frac{1}{k} h^{(k-1)},
\]

where \(C h^{(k)} \) denotes the \(C \) transform of the sequence \(h^{(k)} \). Noting that, for \(n \geq k \), the \(n \)th term of \(C h^{(k)} \) is

\[
\frac{1}{n+1} \sum_{p=k}^{n} \binom{p}{k} \Delta^{p-k} d_k,
\]

a verification of (1) follows from the identities

\[
\Delta^{p-k} d_k = \Delta^{p-k} d_{k-1} - \Delta^{p-k+1} d_{k-1} \quad \text{and} \quad \binom{p}{k} - \binom{p-1}{k-1} = \binom{p-1}{k-1}.
\]

Presented to the Society, July 5, 1962; received by the editors July 22, 1962.

837
If in (1), $k = 1$, convergence of $h^{(0)}$ immediately implies $h^{(1)}_n \to 0$ ($C, 1$). Suppose now that $k - 1$ is a positive integer for which $h^{(k-1)}_n \to 0$ ($C, k - 1$). Applying the C^{k-1} matrix to both sides of (1), we have

$$C^{k}h^{(k)} = C^{k}h^{(k-1)} - \frac{1}{k} C^{k-1}h^{(k-1)}.$$

Since $C^{k-1}h^{(k-1)}$ has limit zero, so does $C^{k}h^{(k-1)}$, and therefore $C^{k}h^{(k)}$ has limit zero. This completes the proof.

Corollary. If H is a Hausdorff matrix and $h^{(0)}$ converges, then for every positive integer k for which $h^{(k)}$ converges, $h^{(k)}$ has limit zero.

Proof. (C, k) summability is regular.

Reference

University of North Carolina