A VARIATION ON THE STONE-WEIERSTRASS
THEOREM
R. I. JEWETT

If \(X \) is a set, let \(I^X \) be all functions from \(X \) into the unit interval \(I \). Note that if \(f \) and \(g \) are in \(I^X \) then so are \(1-f \) and \(fg \). Such a collection of functions is said to have property \(V \). That is, \(F \) has property \(V \) in case

(i) \(F \subseteq I^X \) for some set \(X \),
(ii) \(f \in F \) implies \(1-f \in F \),
(iii) \(f, g \in F \) implies \(fg \in F \).

Giving \(I^X \) the topology of uniform convergence, we have that the closure of a set with property \(V \) has property \(V \), as does the intersection of such sets. Thus every subset of \(I^X \) is contained in a smallest set with property \(V \), and in a smallest closed set with property \(V \). If \(X \) is a topological space then the set \(D(X) \) of all continuous functions from \(X \) into \(I \) is closed and has property \(V \). The idea of considering such collections of functions comes from a statement of von Neumann in [1]. Essentially, he claims without proof what we give here as a corollary to Theorem 2. I am indebted to Dr. R. S. Pierce for bringing the problem to my attention.

Definition. If \(n \) is a positive integer, let \(P_n \) be the smallest subset of \(D(I^n) \) that has property \(V \) and contains the \(n \) projections.

Lemma 1. Let \(F \) have property \(V \), \(p \in P_n \), and \(f_k \in F \) for \(k = 1, 2, \ldots, n \). Then the function \(f \) defined by

\[
 f(x) = p(f_1(x), f_2(x), \ldots, f_n(x))
\]

is in \(F \).

Proof. Let \(Q \) be the set of all \(q \in D(I^n) \) for which \(q(f_1(x), f_2(x), \ldots, f_n(x)) \) is in \(F \). Then \(Q \) has property \(V \) and contains the \(n \) projections. So \(Q \) contains \(P_n \).

Lemma 2. If \(a < b \) and \(\epsilon > 0 \), then there exists \(p \in P_1 \) such that

- \(p > 1 - \epsilon \) in \([0, a]\),
- \(p < \epsilon \) in \([b, 1]\).

We set \([0, a] = \emptyset \) if \(a < 0 \) and \([b, 1] = \emptyset \) if \(b > 1 \).

Proof. Since for a sufficiently large integer \(k \), \(x^k(1-x)^k < \epsilon \) and

Received by the editors August 2, 1962.

690
1 − \(x^k(1−x)^k\) > 1 − \(\varepsilon\) for all \(x\) in \(I\), we can assume that 0 ≤ \(a\) and \(b\) ≤ 1. Also, since there exist \(a', b'\) such that \(a < a' < b' < b\), we can assume that 0 < \(a\) < \(b\) < 1. Now our solution will be of the form \(\rho(x) = (1−x^m)^n\).

Pick \(r\) such that \(\left(\frac{3}{4}\right)^r < \varepsilon\). Pick \(m, s\) such that

\[
\left(\frac{3}{4}\right)^r < s < \frac{1}{b^m} < \left(\frac{\varepsilon}{r}\right)\frac{1}{a^n}.
\]

Let \(n = rs\) and note that \(na^m < \varepsilon, \frac{3}{4} < sb^m < 1.\) So

\[
(1 − a^m)^n > 1 − na^m > 1 − \varepsilon,
\]

\[
(1 − b^m)^n = [(1 − b^m)^s]^r < \left[1 − sb^m + \frac{1}{2} (sb^m)^2\right]^r < \left(\frac{3}{4}\right)^r < \varepsilon.
\]

One can prove by induction that if 0 < \(x\) < 1 then \((1−x)^n < 1−nx + \frac{1}{4}(nx)^2.\)

Lemma 3. If \(a_k, b_k \in I\) for \(k = 1, 2, \ldots, n\) then

\[
\prod_{1}^{n} a_k - \prod_{1}^{n} b_k = \sum_{1}^{n} |a_k - b_k|.
\]

Proof. The induction step can be verified as follows. Let
\(a = a_1a_2 \cdots a_{n-1}\) and \(b = b_1b_2 \cdots b_{n-1}.\) So \(a, b \in I\) and

\[
|a_{n-k} - bb_n| \leq |a_{n-k} - ba_n| + |ba_n - bb_n|
\]

\[
\leq |a - b| + |a_n - b_n|.
\]

Lemma 4. Let \((a, b) \in I \times I\) and \(\varepsilon, \delta > 0.\) Then there exists \(p \in P_3\) such that

\[
\rho(x, y) > 1 − \varepsilon \text{ if } (x − a)^2 + (y − b)^2 \leq \delta^2,
\]

\[
\rho(x, y) < \varepsilon \text{ if } (x − a)^2 + (y − b)^2 \geq (4\delta)^2.
\]

Proof. Let the functions \(p_1, p_2, p_3, p_4 \in P_1\) correspond by Lemma 2 to \(a − 2\delta < a − \delta, a + \delta < a + 2\delta, b − 2\delta < b − \delta, b + \delta < b + 2\delta\) and \(\varepsilon/4 > 0,\) respectively. Then let \(p\) be given by

\[
\rho(x, y) = [1 − p_1(x)]p_2(x)[1 − p_4(y)]p_4(y).
\]

Lemma 5. Let \(A, B \subseteq I \times I\) be closed and disjoint. If \(\varepsilon > 0\) and \(p \in P_3,\) then there exists \(q \in P_2\) such that

\[
q \geq p \text{ in } I \times I,
\]

\[
q > 1 − \varepsilon \text{ in } A,
\]

\[
q < p + \varepsilon \text{ in } B.
\]
PROOF. We can assume that \(A \) and \(B \) are nonvoid. Let \(4\delta = \text{dist}(A, B) \). Then \(\delta > 0 \) and there exist \((c_k, d_k) \in A \) for \(k = 1, 2, \ldots, n \) such that the \(\delta \)-neighborhoods of the \((c_k, d_k)\) cover \(A \). For each \(k \) there exists \(q_k \in P_2 \) such that
\[
q_k(x, y) > 1 - \frac{\epsilon}{n} \text{ if } (x - c_k)^2 + (y - d_k)^2 \leq \delta^2,
q_k(x, y) < \frac{\epsilon}{n} \text{ if } (x - c_k)^2 + (y - d_k)^2 \geq (4\delta)^2.
\]
Let \(q_0 = (1 - q_1)(1 - q_2) \cdots (1 - q_n) \). It is clear that \(q_0 > 1 - \epsilon \) in \(B \), and \(q_0 < \epsilon/n \) in \(A \). Now let \(q = 1 - (1 - p)q_0 \). In \(I \times I \) we have \(q \geq 1 - (1 - p) \) in \(A \) and \(q \geq 1 - q_0 > 1 - \epsilon \). And in \(B \) we have \(q - p = 1 - q_0 + pq_0 - p = (1 - q_0)(1 - p) < \epsilon \).

Theorem 1. Let \(X \) be a set and \(F \) a closed subset of \(I^X \). If \(F \) has property \(V \) then \(F \) is a lattice.

Proof. In view of Lemma 1, it is enough to prove that the functions \((x, y) \rightarrow x \lor y\) and \((x, y) \rightarrow x \land y\) of \(I \times I \) into \(I \) can be uniformly approximated by members of \(P_2 \). Since \(x \lor y = 1 - (1 - x) \land (1 - y) \), it is enough to check \(x \land y \). Let \(0 < \epsilon < \frac{1}{4} \) and let \(C \) be the set of all \((x, y) \in I \times I \) for which \(\epsilon \leq x \land y \leq 1 - \epsilon \). Then \(C \) is closed and there exists \(m > 0 \) such that \(x^m y^m < \epsilon \) in \(C \). Let \(p(x, y) = 1 - x^m y^m \). Then \(1 - \epsilon < p < 1 \) in \(C \). For \(k \geq 0 \) let
\[
A_k = \{ (x, y) \in C | p^k(x, y) \geq x \land y \},
B_k = \{ (x, y) \in C | p^k(x, y) \leq x \land y \}.
\]
Then \(A_1 = C \) and for \(k \geq 0 \)
\[
A_k \supset A_{k+1}, \quad B_k \supset C - A_k, \quad A_{k+1} \cap B_k = \emptyset.
\]
Because the \(A_k \) have void intersection, there exists \(n > 2 \) such that \(A_n = \emptyset \). For \(k = 1, 2, \ldots, n \) pick \(q_k \in P_2 \) such that \(q_k \geq p \) in \(I \times I \), \(q_k > 1 - \epsilon/n \) in \(B_{k-1} \), and \(q_k < p + \epsilon/n \) in \(A_k \). Let \(q = q_1 q_2 \cdots q_n \). Now \(C = \bigcup_{i=1}^{n-1} (A_k - A_{k+1}) \). For \(k = 1, 2, \ldots, n - 1 \) we have in \(A_k - A_{k+1} \)
\[
0 \leq p^k - x \land y < p^k - p^{k+1} = p^k(1 - p) < \epsilon.
\]
Also, we have
\[
| p^k - q | \leq | p^k - p^{k+1} | + | p^{k+1} - q | < \epsilon + \left| p^{k+1} - \prod_{i=1}^{n} q_i \right|
\leq \epsilon + \sum_{i=1}^{k} | p - q_i | + | p - q_{k+1} | + \sum_{i=k+2}^{n} | 1 - q_i |
< \epsilon + k \frac{\epsilon}{n} + (1 - p) + (n - k - 1) \frac{\epsilon}{n} < 3\epsilon.
\]
Thus in \(C \), \(|q - x \land y| < 4\varepsilon\). Now by Lemma 5, there exists \(g' \in P_2 \) such that \(g' \geq q \) in \(I \times I \), \(g' > 1 - \varepsilon \) if \(x \land y \geq 1 - \varepsilon \), and \(g' < q + \varepsilon \) if \(x \land y \leq 1 - 2\varepsilon \). Clearly \(|g' - x \land y| < 6\varepsilon\) if \(x \land y \leq \varepsilon \). Similarly, there exists \(g'' \in P_2 \) such that \(g'' \leq q \) in \(I \times I \), \(g'' < \varepsilon \) if \(x \land y \leq \varepsilon \), and \(g'' > q' - \varepsilon \) if \(x \land y \geq 2\varepsilon \). So \(|g'' - x \land y| < 8\varepsilon\) in all of \(I \times I \).

Theorem 2. Let \(X \) be a compact space and \(F \) a closed, point-separating subset of \(D(X) \) that has property \(V \). If \(S \) is the set of points of \(X \) taken into the doubleton \(\{0, 1\} \) by every member of \(F \), then \(F \) consists of all functions \(f \in D(X) \) for which \(f(S) \subseteq \{0, 1\} \).

Proof. It is well known \([2]\) that for a compact space \(Y \), a closed sublattice of \(C(Y) \) contains any continuous function which it approximates at each pair of points. So, let \(f \in D(X) \) be such that \(f(S) \subseteq \{0, 1\} \), and let \(u, v \) be distinct elements of \(X \). The case when \(X \) has only one element is straightforward.

Suppose \(u, v \in S \). Then there exists \(g \in F \) such that \(g(u) \neq g(v) \), and then one of \(g, 1 - g, 1 - g(1 - g) \) duplicates \(f \) on \(u \) and \(v \).

If \(u, v \in S \), \(u, v \in S \), then there exists \(g \in F \) such that \(g(u) = g(v) \) and \(g(v) \in (0, 1) \). As can be seen from Lemmas 1 and 2, something of the form \(1 - (1 - g^n) \) will do.

If \(u, v \in S \), then there exist \(g_1, g_2, g_3 \in F \) such that \(g_1(v) \leq g_1(u) \in (0, 1) \), \(g_2(u) \leq g_2(v) \in (0, 1) \), and \(g_3(v) < g_3(u) \). If we let \(h_1 = g_1 g_3 \) and \(h_2 = g_2(1 - g_3) \), we have \(h_1(v) < h_2(u) < 1 \) and \(h_2(u) < h_2(v) < 1 \). Something of the form \(f_2 = (1 - h_2^m) \) approximates \(f \) at \(u \) and \(f \) at \(v \). Something of the form \(f_1 = (1 - h_1^n) \) approximates \(f \) at \(u \) and \(1 \) at \(v \). So \(f_1 f_2 \) approximates \(f \) at \(u \) and \(v \).

Corollary. The smallest closed subset of \(D(I^n) \) having property \(V \) and containing the projections and at least one constant \(c \in (0, 1) \) is \(D(I^n) \) itself.

References

University of Oregon