A NOTE ON ABSOLUTE G_t-SPACES

M. REICHAW-REICHBACH

A set X, which is a G_3 in a compact space\(^1\) is called an absolute G_t-space (simply-absolute G_3) or a topologically complete space. It was noted by Knaster\(^2\) that there exist two classes \mathfrak{A} and \mathfrak{B} of such spaces, where by definition:

$X \in \mathfrak{A}$ if X is an absolute G_3 and there exists a homeomorphism $h: X \to Y$ of X into a compact space Y, such that the image $h(X)$ of X can be written in the form:

$\bigcap_{i=1}^{\infty} G_i$, with $\dim Fr(G_i) < \dim X$ and G_i open in Y,

$X \in \mathfrak{B}$ if X is an absolute G_3 and $X \in \mathfrak{A}$. Knaster also showed\(^4\) i.a., that the set $N \times D$, where N is the set of irrational numbers of the interval $D = [0, 1]$, belongs to \mathfrak{B}. In answer to one of his questions, it was proved by Lelek\(^5\) that every set of the form $N \times Z$, where Z is an arbitrary finite-dimensional compact set, belongs to \mathfrak{B}. Lelek posed also the following:

Problem.\(^6\) Does there exist for every metric, separable and topologically complete, finite-dimensional space $X \in \mathfrak{B}$, with $\dim X > 0$, a compact space Z, with $\dim Z > 0$ such that the set $N \times Z$ has a topological image in X?

The aim of this paper is to give a negative answer to this problem.

This will be done by the following:

Example of a set $X \in \mathfrak{B}$, with $\dim X = 1$, which does not contain a topological image of any set of the form $N \times Z$ with Z compact and $\dim Z > 0$.

Let namely D_n be the closed unit interval joining the points $p_n = (1/n, 0)$ and $q_n = (1/n, 1)$ in the (x, y)-plane, $n = 1, 2, \cdots$ (i.e., $D_n = \{ (x, y); x = 1/n, 0 \leq y \leq 1 \}$) and let $p = (0, 0)$ and $q = (0, 1)$.

We put $X = \bigcup_{n=1}^{\infty} D_n \cup (p) \cup (q)$. Evidently $\dim X = 1$, and it suffices to show that the set X has the following properties:

\(^1\) Only metric, separable spaces are considered.
\(^2\) See [1, p. 264].
\(^3\) $\dim X$ denotes the dimension of X; $Fr(X)$ is the boundary of X.
\(^4\) See [1, pp. 263-264].
\(^5\) See [3, p. 34].
\(^6\) See [3, p. 34]. The author learned recently that this problem has also been solved, in an entirely different way, by A. Lelek (unpublished to date).
A NOTE ON ABSOLUTE G_δ-SPACES

(a) X is an absolute G_δ,\footnote{It is easily seen that X is also an absolute F_{σ}, i.e. an F_{σ} in a compact space.}

(b) $X \in \mathcal{F}$ and

(c) given a set T of the form $T = N \times Z$ with Z compact and $\dim Z > 0$, there does not exist a homeomorphism of T into X.

To show (a), note that the closure \overline{X} of X in the (x, y)-plane equals:

$$\overline{X} = \bigcup_{n=1}^{\infty} D_n \cup D_0,$$

where $D_0 = \{(x, y); x = 0, 0 \leq y \leq 1\}$ and \overline{X} is a compact space. It differs from X by the open interval $D_0 - \{(p) \cup (q)\}$, which is an F_σ in \overline{X}. Therefore (a) holds.

To show (b), we shall prove that the assumption $X \in \mathcal{F}$ leads to a contradiction.

Suppose, that $X \in \mathcal{F}$. Then:

(1) There exists a homeomorphism $h: X \to Y$ of X into a compact space Y, such that $\dim [Y - h(X)] < \dim X = 1$.

Since the intervals D_n are disjoint, the sets $h(D_n); n = 1, 2, \ldots$ form a sequence of disjoint continua (even arcs) in the compact space Y. Thus, there exists a subsequence $\{k\}$ of natural numbers, such that the continua $h(D_k)$ converge to a continuum $E = \lim_{k \to \infty} h(D_k)$.

Now, it is easily seen that

$$\text{(b1)} \quad \text{the diameter } \delta(E) > 0.$$

Indeed, if E were to reduce to a point \bar{p}, there would be, for the endpoints p_k and q_k of D_k: $p_k \to \bar{p}, h(p_k) \to \bar{p} = h(p)$ and $q_k \to \bar{p}, h(q_k) \to \bar{p} = h(q)$ which is impossible, since h is a one-to-one mapping.

We also have

$$\text{(b2)} \quad E \cap h(D_n) = 0 \quad \text{for every } n = 1, 2, \ldots$$

since otherwise there would exist a number n_0, a point $r \in D_{n_0}$, a subsequence $\{j\}$ of $\{k\}$ and points $r_j \in D_j$ such that $\lim_{j \to \infty} r_j = r$ which is impossible by the definition of the intervals D_n. (No interval D_n contains a limit point of a sequence of points belonging to intervals D_n for $n \neq n_0$.)

By (b1), E is a continuum containing more than one point and therefore $\dim E \geq 1$. But by (b2) we have $E \subset Y - h(\bigcup_{n=1}^{\infty} D_n)$. Hence by $h(X) = h(\bigcup_{n=1}^{\infty} D_n) \cup (h(p)) \cup (h(q))$ we have $\dim [Y - h(X)] \geq 1$ which contradicts (1).

Thus (b) holds. It remains to show (c). For this purpose suppose, to the contrary, that there would exist a compact set Z with $\dim Z > 0$ \footnote{This follows from [2, p. 110, Theorem 4]. It can also be derived from [5, p. 11, (9, 11)].}
such that the set \(T = N \times Z \) has a topological image \(f(T) \) in \(X \). Since \(\dim Z > 0 \), the compact set \(Z \) contains a continuum \(C \) which does not reduce to one point.\(^{10}\) Therefore the set \(T = N \times Z \) would contain the set \(N \times C \) which consists of \(2^N \) disjoint continua \(C_i \) and we could write \(N \times C = \bigcup_{i \in N} C_i \). The image \(f(C_i) \) of every \(C_i \) would be a continuum contained in \(X \).\(^{11}\) But \(X \) is a union of a denumerable sequence of closed sets. Hence, by a theorem of Sierpinski\(^{12}\) the set \(f(C_i) \) has to be contained in one and only one, interval \(D_n = D_n(t) \), \(n = 1, 2, \ldots \). Thus \(f(C_i) \) would be, for every \(\xi \), a closed interval contained in an interval \(D_n(t) \). Now for \(\xi' \neq \xi'' \) the intervals \(f(C_{\xi'}) \) and \(f(C_{\xi''}) \) would be disjoint and therefore, there would exist a family of power \(2^N \) of disjoint intervals contained in the set \(X \), which is impossible (since \(X \) is a union of a countable family of intervals and two points). Therefore (c) also holds.

Remark. As noted in footnote 8, the proof of (1) is a consequence of Theorem 1, p. 31 of [3]. This theorem concerns finite-dimensional spaces. Now it is easily seen that (1) follows also from the fact that

(2) If \(X \in \mathfrak{A} \), then there exists a compact space \(Y \) and a homeomorphism \(h: X \to Y \) such that \(h(X) = \bigcap_{i=1}^n G_i \) where \(G_i \) are open in \(Y \) and \(Y - h(X) = \bigcup_{i=1}^n \text{Fr}(G_i) \) with \(\dim \text{Fr}(G_i) < \dim X \).\(^{13}\)

Indeed, if \(X \in \mathfrak{A} \) then \(X \) can be represented in the form (1\(^o\)). Taking the closure \(\text{cl}(h(X)) \) of \(h(X) \) in \(Y \) and denoting this "new" set \(\text{cl}(h(X)) \) by \(Y \) and the "new" sets \(G_i \cap \text{cl}(h(X)) \) by \(G_i \), it is easy to verify that (2) holds without any assumption of finite-dimensionality of \(X \).

References

Technion, Israel Institute of Technology, Haifa

\(^{10}\) See [2, p. 130]; also [4, p. 278].
\(^{11}\) Evidently \(f(C_i) \) contains more than one point.
\(^{13}\) See [2, p. 113].
\(^{12}\) The proof is analogous to that of the necessity of Theorem 1, p. 31 of [3].