A SUPPLEMENT TO PARKER’S “REMARKS ON BALANCED INCOMPLETE BLOCK DESIGNS”

ESTHER SEIDEN

1. E. T. Parker proved [2] the following theorem.

Let D be a balanced incomplete block design (BIBD) with parameters $(v, b, k, r, \lambda) = (2x + 2, 4x + 2, x + 1, 2x + 1, x)$, where x is a positive even integer. Then (i) any two blocks of D have at least one common element, and (ii) no two blocks of D are the same subset.

Parker showed further that conclusion (i) need not hold when x is odd. He concludes his remarks saying, “Whether conclusion (ii) holds for odd x appears less easy to decide.” It is the purpose of this note to show that conclusion (ii) holds also for x odd.

The result of this note is established using formulae of Bose and Bush [1] connecting parameters of orthogonal arrays $(\lambda s^2, k, s, 2)$:

(a) $\sum_{i=1}^{s} n_i = \lambda s^2 - 1$,
(b) $\sum_{i=1}^{s} i n_i = k(\lambda s - 1)$,
(c) $\sum_{i=1}^{s} i(i-1)n_i = k(k-1)(\lambda - 1)$,

where n_i denotes the number of columns which have i coincidences with any chosen fixed column of the array, λ is the frequency of each ordered pair in like columns of each pair of distinct rows of the array, k is the number of rows, and s is the number of values the elements of the array can take on.

2. On conclusion (ii) of Parker’s Theorem. Conclusion (ii) holds for any positive integer x.

Proof. Parker shows that the existence of BIBD with parameters $(2x + 2, 4x + 2, x + 1, 2x + 1, x)$, x a positive integer, implies the existence of an orthogonal array with $s = 2, \lambda = x + 1, k = 2x + 2$. If conclusion (ii) does not hold then this array would have to include at least two identical columns. This means that equations (a), (b), and (c) would have to hold with $n_{2\lambda} \geq 1$. For $k = 2\lambda, s = 2$ equations (a), (b) and (c) reduce to

$$\sum_{\tilde{s} \leq 2\lambda} n_{\tilde{s}} = 4\lambda - 1$$
$$\sum_{\tilde{s} \leq 2\lambda} i n_{\tilde{s}} = 2\lambda(2\lambda - 1)$$

Received by the editors July 16, 1962.

1 This research memorandum was partially supported by the National Science Foundation, Grant No. G18976.

731
\[\sum_{0 \leq i \leq 2\lambda} i(i - 1) = 2\lambda(2\lambda - 1)(\lambda - 1). \]

Hence, the average number of coincidences, say, \(\bar{n} = 2\lambda(2\lambda - 1)/(4\lambda - 1). \)
Furthermore \[\sum_{0 \leq i \leq 2\lambda} (i - \bar{n})^2 = 2\lambda^2(2\lambda - 1)/(4\lambda - 1). \]
If \(n_{2\lambda} = 1 \) then the contribution of this term alone to the total sum of squares equals \(16\lambda^4/(4\lambda - 1)^2 \) which is clearly impossible.

REFERENCES

Michigan State University