(2) Is a topological 2-sphere \(S \) in \(E^3 \) tame if corresponding to each point \(p \in S \) there are cones \(\gamma_1 \) and \(\gamma_2 \), each with vertex at \(p \), such that \(\gamma_1 - p \) and \(\gamma_2 - p \) lie on opposite sides of \(S \)?

Bibliography

1. R. H. Bing, A decomposition of \(E^3 \) into points and tame arcs such that the decomposition space is topologically different from \(E^3 \), Ann. of Math. (2) 65 (1957), 484-500.

University of Georgia

CORRECTION TO "A CHARACTERIZATION OF QF-3 ALGEBRAS"

HIROYUKI TACHIKAWA

J. P. Jans is kind enough to inform me a gap of Necessity proof in my paper appearing in these Proceedings, 13 (1962), 701-703. In this note I shall report Theorem 2 in the paper is however valid by a slight alteration of the proof. In p. 702, the argument between line 9 and line 18 should be replaced by the following: Let \(e_\lambda \) be a primitive idempotent of \(A \) such that \(l(N)e_\lambda \neq 0 \). Then there exists an element \(x \in L \) such that \(l(N)e_\lambda x \neq 0 \) for \(L \) is faithful. Denote \(x \) by \(\sum a_\lambda e_\lambda + a_\lambda e_\lambda \), \(a_\lambda , a_\lambda \in A \). Since \(e_\lambda (\sum a_\lambda e_\lambda) \subseteq N, l(N)e_\lambda x = l(N)e_\lambda a_\lambda e_\lambda \) and we have \(l(N)e_\lambda L e_\lambda \neq 0 \). Here, suppose \(L e_\lambda \neq A e_\lambda \). Then \(L e_\lambda \subseteq Ne_\lambda \) for \(N e_\lambda \) is the unique maximal left ideal of \(A e_\lambda \) and it follows \(l(N)e_\lambda L e_\lambda \subseteq l(N)N = 0 \). But this is a contradiction. Thus we obtain \(L e_\lambda = A e_\lambda \). Now, let \(\theta \) be the epimorphism: \(L \rightarrow L e_\lambda (= A e_\lambda) \), defined by \(\theta(x) = xe_\lambda \) for all \(x \in L \). Since \(L e_\lambda \) is projective, we have a direct sum decomposition of \(L: L_\lambda \oplus L'_\lambda \), where \(L_\lambda \approx A e_\lambda \). Then as \(\text{Hom}(L, K) \) is monomorphic to \(P \) and \(\text{Hom}(A e_\lambda, K) \) is injective, \(\text{Hom}(A e_\lambda, K) \) is isomorphic to a direct summand of \(P \). Thus if we denote by \(\Lambda \) the set of all indices \(\lambda \) such that \(l(N)e_\lambda \neq 0 \), \(\text{Hom}(\sum_{\lambda \in \Lambda} A e_\lambda, K) \) is projective.