SOME BOUNDARY VALUE PROBLEMS FOR LINEAR DIFFERENTIAL SYSTEMS

W. J. COLES

1. Introduction. Let $A(t)$ and $f(t)$ be $n \times n$ and $n \times 1$ matrices, respectively, continuous on an interval $[a, b]$. In [1], J. B. Garner and L. P. Burton consider the boundary value problems

\begin{align*}
(1) \quad y' &= Ay + f, \quad y_i(a) = \beta_i \quad (1 \leq i < n), \quad y_n(b) = \beta_n \\
(2) \quad y' &= Ay + f, \quad y_i(a) = \beta_i, \quad y_i(c) = \beta_i \quad (1 < i < n, a < c < b), \quad y_n(b) = \beta_n,
\end{align*}

and prove:

Theorem A. If, for each i and j ($1 \leq i, j \leq n$, $i \neq j$), $a_{ij}a_{in}a_{jn} > 0$ and $a_{in}a_{nj} > 0$ on $[a, b]$, the problem (1) has a unique solution;

Theorem B. Under certain conditions on $A(t)$, too lengthy to give here, the problem (2) has a unique solution.

The authors note that Theorem A has a dual in which the roles of a and b are interchanged, provided that $a_{ij}a_{in}a_{jn} < 0$ is assumed.

The purpose here is to obtain theorems corresponding to Theorem A and its dual, with considerably less restriction on $A(t)$, and to use these results to obtain as a direct consequence a theorem corresponding to Theorem B.

2. The two-point problem. As usual, we rephrase the problem in terms of the homogeneous system. Let N be fixed ($1 \leq N \leq n$); let $Q = (\delta_{ij} \delta_{in})$, and let $P = E - Q$ (E being the $n \times n$ identity); let $\beta = \text{col}(\beta_i)$. Let $z(t)$ be a solution of $y' = Ay + f$ which does not satisfy

\begin{equation}
(3) \quad y' = Ay + f, \quad Py(a) + Qy(b) = \beta.
\end{equation}

If X is any nonsingular solution of $X' = AX$, the general solution of $y' = Ay + f$ can be written in the form $Xc + z$, and our boundary condition reduces to

$$[PX(a) + QX(b)] \cdot c = \beta - Pz(a) - Qz(b) \neq 0.$$

Thus (3) has a unique solution if and only if the equation $X' = AX$
has a nonsingular solution for which \(PX(a) + QX(b) \) is nonsingular. We may assume that \(X(a) = E \); our condition is then that \(x_N(b) \neq 0 \) if \(x' = Ax \) and \(x_i(a) = \delta_{ii} \) (1 \(\leq i \leq n \)).

For convenience we list the following conditions and definitions.

\((0)\) \(a_{ii}(t) \equiv 0 \) (1 \(\leq i \leq n \)).

\((I)\) For \(N \) fixed (1 \(\leq N \leq n \)), there exist \(K \neq N \) (1 \(\leq K \leq n \)) and \(m_K \) (1 \(\leq m_K \leq n - 1 \)) such that no product \(a_{K1}(t_0)a_{j1j_2}(t_1) \cdots a_{jmN}(t_m) \), with at most \(m_K + 1 \) factors, changes sign on \(a \leq t_i \leq b \) (0 \(\leq i \leq m \)), each such product has the same sign, and one such product, with at most \(m_K \) factors, is nonzero at \(t = a \). Let \(s_{KN} \) be 1 or -1, according as this last product is positive or negative at \(t = a \); let \(s_{NN} = 1 \).

\((II)\) For \(N \) fixed, (I) holds for each \(K \neq N \); \(s_{KN}s_{NN}(t) \equiv 0 \); the \(m_K \)'s may be taken equal.

\((III)\) \(x' = Ax \) and \(x_i(a) = \delta_{ii} \) (1 \(\leq i \leq n \)).

Lemma 1. If \(x' = Ax \) and (0) holds, and if, for a fixed \(j_i \), \(\sigma_i \) is the set of integers including 1, \(\cdots \), \(n \), but excluding \(j_i \), then

\((4i) \quad x_{i_0}(t_0) = x_{i_0}(a) + \sum_{j_1 \in \sigma_0} \int_a^{t_0} a_{j_1i_1}(t_1)x_{j_1}(t_1)dt_1; \)

\((4ii) \quad x_{i_0}(t_0) = x_{i_0}(a) + \sum_{k=1}^{m} \sum_{j_1 \in \sigma_0} \cdots \sum_{j_{k+N-1} \in \sigma_{k-1}} \int_a^{t_0} dt_1 \cdots \)

\(\cdot \int_a^{t_k-1} \int_a^{t_{k-1}-1} \cdots \int_a^{t_{k-1}-1} \cdots \sum_{j_{k+N-1} \in \sigma_{k-1}} \int_a^{t_0} dt_1 \cdots \)

\(\cdot \int_a^{t_m-1} \int_a^{t_{m-1}-1} \cdots \sum_{j_{m+1} \in \sigma_m} \int_a^{t_0} \cdots \int_a^{t_{m-1}} \cdots \sum_{j_{m+1} \in \sigma_m} \int_a^{t_0} \cdots \int_a^{t_{m}} \cdots \int_a^{t_{m}} \cdots \int_a^{t_{m}} a_{j_{m+1,i_{m+1}}(t_{m+1})} dt_{m+1}, \quad m \geq 1. \)

Proof. Integration of \(x_{i_0}' \) gives (4i) and, in fact, a similar expression for each \(x_{i_j} \). Substituting these expressions into the right-hand side of (4i), and continuing the process, gives (4ii).

Lemma 2. If (0), (I), and (III) hold, there is a \(\delta > 0 \) such that \(s_{KN}x_K(t) > 0 \) on \((a, a+\delta) \).

Proof. In (4), let \(j_0 = K \) and \(j_{m+1} = N \). By (III), the first term in each of (4i) and (4ii) is zero. Since all possible products with \(m + 1 \) factors and of the type in (I) occur in the last set of terms in (4i) or (4ii), proper choice of \(m \) will cause to appear a product involving \(x_N \) which is nonzero at \(a \). This term, and indeed all terms involving \(x_N \),
have the sign of s_{KN}. All other terms in the last set are zero at a; all nonzero terms in the second set of terms in (4ii) involve $x_N(a)$, and so have the sign of s_{KN}. Hence, for small positive δ, $s_{KN}x_K(t) > 0$ on $(a, a + \delta)$.

Corollary 1. If (0), (II) and (III) hold, there is a $\delta > 0$ such that

$$s_{IN}x_i(t) > 0 \quad (1 \leq i \leq n)$$

on $(a, a + \delta)$.

Lemma 3. If (0), (II) and (III) hold, then (5) holds on $(a, b]$.

Proof. By Corollary 1, there is a δ such that $0 < \delta < b - a$ and for which (5) holds on $(a, a + \delta)$. Let $a < c < a + \delta$, and let $P(t) = x_1(t) \cdots x_n(t)$. Then

$$P(t) = P(c) \exp \int_c^t \sum_{k,j=1; k \neq j}^n a_{kj}x_j/x_k dt$$

on $(c, a + \delta)$. Now, for each k and j such that $k \neq j$, we have $a_{kj}x_j/x_k \geq 0$. Indeed, if $k = N$ or $j = N$ this follows from the condition $s_{IN}x_N(t) \geq 0$ in (II) and from the conclusion of Lemma 2. If $j \neq N$ and $k \neq N$, let m be the common value of the m_i's in (II). There is a product P_{jN} of the form in (I) (with $K = j$), with at most m factors, such that $s_{jN}P_{jN}(t) \geq 0$. Indeed, if $k = N$ or $j = N$ this follows from the conclusion of Lemma 2. If $j \neq N$ and $k \neq N$, let m be the common value of the m_i's in (II). There is a product P_{jN} of the form in (I) (with $K = j$), with at most m factors, such that $s_{jN}P_{jN}(t) \geq 0$. Hence we can write $a_{kj}x_j/x_k = [a_{kj}P_{jN}(a)/x_k] \cdot [x_j/P_{jN}(a)]$, with each factor non-negative. Thus the statement is verified. From this, $|P(t)| \geq |P(c)|$ on $(c, a + \delta)$. Since the inequality must hold even for $t = a + \delta$, then $P(a + \delta) \neq 0$.

Now let Δ be the lub of the set of δ's such that $0 < \delta < b - a$ and for which (5) holds on $(a, a + \delta)$. Clearly (5) holds on $(a, a + \Delta)$, and so (by the above argument) (5) holds at $t = a + \Delta$. Unless $\Delta = b - a$, the continuity of $P(t)$ gives a contradiction to the lub property of Δ. This completes the proof.

The following theorem, corresponding to Theorem A, is now almost immediate.

Theorem 1. If (II) holds for products excluding the $a_{ii}(t)$'s, the problem (3) has a unique solution.

Proof. The proof depends only on Lemma 3, and so we must show that Lemma 3 holds even without condition (0). To this end, let $z(t) = G(t)x(t)$, where $x(t)$ satisfies (III) and $G(t)$ is the diagonal matrix for which $g_{ii}(t) = \exp \int_a^t -a_{ii}(s) ds$. Then $z' = B(t)z$, where $b_{ii}(t) = 0$ and, for $i \neq j$, $b_{ij}(t) = a_{ij}(t) \exp \int_a^t [a_{jj}(s) - a_{ii}(s)] ds$. Thus if (II) holds for
A(t) then (II) holds for B(t), with the same s_{KN}'s; if (III) holds for $x(t)$ then (III) holds for $z(t)$; and (0) holds for $B(t)$. Thus Lemma 3 as it stands applies to $z(t)$, and also, since $x_i(t) = z_i(t) \exp \int_a^t a_{ii}(s) \, ds$, to $x(t)$. Thus condition (0) can be eliminated from Lemma 3, and the proof is complete.

The theorem corresponding to the dual of Theorem A is contained in the following statements. Corresponding to (I), (II), and (III) we have:

(I') As (I), except that the products with an odd number of factors and those with an even number of factors differ in sign, and there is at least one product, say with r factors ($r \equiv m_K$), which is nonzero at b.

Let $(-1)^r s_{KN}$ be 1 or -1 according as this last product is positive or negative at b. Let $s_{KN} = 1$.

(II') For some fixed N, (I) holds for each $K \neq N$ $(1 \leq K \leq n)$; and $x_i(t) = \delta_{iN} (1 \leq i \leq n)$.

(III') $x' = Ax$, and $x_i(b) = \delta_{iN} (1 \leq i \leq n)$.

Lemma 2'. If (0), (I') and (II') hold, there is a $\delta > 0$ such that $s_{KN} x_K(t) > 0$ on $(b - \delta, b)$.

Proof. The proof is like that of Lemma 2, using (4). Alternatively, let $A(t) = A(b)$ for $t > b$; let $s = 2b - t$, $B(s) = -A(t)$, and $w(s) = x(t)$; and apply Lemma 2 directly to the system $w'(s) = B(s)w(s)$ on the interval $[b, 2b - a]$.

Lemma 3'. If (0), (I') and (II') hold, then

$$s_{iN} x_i(t) > 0 \quad (1 \leq i \leq n)$$

holds on $[a, b]$.

Theorem 1'. If (II') holds for products excluding the $a_{ii}(t)$'s, the problem

$$y' = Ay + f, \quad Qy(a) + Py(b) = \beta$$

has a unique solution.

Theorem 1 implies a stronger version of Theorem A, since the hypotheses of Theorem A imply (II) for each N. Further, coefficient matrices with vanishing entries can be treated; in particular, known theorems (e.g., see [2] and [3]) for the nth order scalar case are implied.

3. The three-point problem. Let $a < c < b$.

Theorem 2. Let M and N be fixed $(1 \leq M \leq n, 1 \leq N \leq n, M \neq N)$.
Let (II) hold on \([c, b]\) and (II') hold on \([a, c]\) for products excluding the \(a_i(t)\)'s, for \(N\) and also for \(M\), with \(s_{MN} = -1\). Let \(R = (\delta_{iM} \delta_{jM})\), \(Q = (\delta_{iN} \delta_{jN})\), and \(S = E - R - Q\). Then the problem

\[
y' = Ay + f, \quad Qy(a) + Sy(c) + Ry(b) = \beta
\]

has a unique solution.

Proof. Let \(X' = AX, X(c) = E\); it suffices to show that \(QX(a) + SX(c) + RX(b)\) is nonsingular, the determinant in question being \(x_{NN}(a)x_{MM}(b) - x_{NM}(a)x_{MN}(b)\). By Lemma 3, \(x_{MM}(b)\) and \(s_{MN}x_{MN}(b)\) are positive; by Lemma 3', \(x_{NN}(a)\) and \(s'_{NM}x_{NM}(a)\) are positive; hence the determinant is positive.

It is a matter of detail to verify that the hypotheses of Theorem B imply those of Theorem 2. As in the two-point case, coefficient matrices with vanishing entries, and in particular the scalar case (e.g., Theorem 2 in [2]), are allowed.

References

University of Utah