Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A simply connected $ 3$-manifold is $ S\sp{3}$ if it is the sum of a solid torus and the complement of a torus knot


Author: John Hempel
Journal: Proc. Amer. Math. Soc. 15 (1964), 154-158
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1964-0157365-6
MathSciNet review: 0157365
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be $ {S^3}$, Ann. of Math. (2) 68 (1958), 17-37. MR 0095471 (20:1973)
  • [2] H. S. M. Coxeter and W. O. Moser, Generators and relations for discrete groups, Springer, Berlin, 1957. MR 0088489 (19:527d)
  • [3] Herman Gluck, The reducibility of embedding problems, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0140098 (25:3521)
  • [4] K. Reidemeister, Knotentheorie, Chelsea, New York, 1948.
  • [5] Akira Tominaga, A unique embedding of a torus homotopic to 0 in a 3-manifold, J. Sci. Hiroshima Univ. Ser. A-1 25 (1961), 1-2. MR 0130680 (24:A540)
  • [6] A. H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528. MR 0125588 (23:A2887)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1964-0157365-6
Article copyright: © Copyright 1964 American Mathematical Society

American Mathematical Society