MULTIPLICATIVE FUNCTIONALS OF A MARKOV PROCESS

R. K. GETOOR AND J. W. WOLL, JR.

The present note may best be viewed as an addendum to Meyer's important paper [2]. As such we refer the reader to [2] for all notations, definitions, etc. In particular \(\{X_t\} \) will always denote a temporally homogeneous Markov process with state space \(X \) (locally compact, separable) satisfying Hunt's hypothesis (A). See [1] or [2].

Let \(\{M_t\} \) be a normalized multiplicative functional of \(\{X_t\} \) [2, p. 136 and p. 141], then Meyer [2, p. 153] has obtained the following very important result: \(\{M_t\} \) has the strong Markov property, that is, for each stopping time \(T \) and random variable \(R \geq 0 \) one has

\[
M_{R+T}(\omega) = M_T(\omega)M_R(\theta_T\omega)
\]
a.s., \(P^\omega \) for each \(\omega \) in \(X \). Unfortunately Meyer's proof contains a slight gap (in the proof of Theorem 4.2 on p. 152 of [2]) and the result is not valid without additional assumptions on \(\{M_t\} \) as the following example shows. Let \(\{X_t\} \) be one-dimensional Brownian motion (so that \(X \) is the real line) and define \(M_t(\omega) = 1 \) for all \(t \geq 0 \) if \(X_0(\omega) \neq 0 \) and \(M_t(\omega) = 0 \) for all \(t \geq 0 \) if \(X_0(\omega) = 0 \). It is easy to see that this defines a multiplicative functional of \(\{X_t\} \) since \(P^\omega(X_t = 0) = 0 \) for all \(t > 0 \) and \(x \) in \(X \). On the other hand if \(T \) is the first passage time to 0 it is immediate that (1.1) is not valid.

We state the following criterion for the strong Markov property.

Theorem. The normalized multiplicative functional \(\{M_t\} \) has the strong Markov property if and only if for every stopping time \(T \) and \(x \) in \(X \),

\[
P^\omega[X_T \in N, M_T > 0] = 0,
\]

where \(N \) is the (universally measurable) set of nonpermanent points of \(\{M_t\} \), i.e., \(N = \{x : P^\omega(M_0 = 0) = 1\} \).

Proof. The sufficiency may be established exactly as in [2], the condition (1.2) being just the condition necessary to make the proof of Theorem 4.2 [2, p. 152] valid. (One can give a much simpler proof of the sufficiency using resolvents instead of semi-groups.) To prove the necessity let \(R = \inf\{t : M_t = 0\} \), then \(R \) is a stopping time and the right continuity of \(\{M_t\} \) implies that \(P^\omega(M_R > 0, R < \infty) = 0 \) for all \(x \). Let \(T \) be any stopping time and consider the random variable

Received by the editors May 31, 1962 and, in revised form, November 19, 1962.
MULTIPLICATIVE FUNCTIONALS OF A MARKOV PROCESS

If \(x \) is fixed the strong Markov property yields

\[
E^*[M_H, H < \infty] \leq E^*[M_T X^r(M_T, R < \infty)] = 0.
\]

Thus \(H = T + R(\theta_T) \geq R \) on \(\{ H < \infty \} \) and so \(T + R(\theta_T) \geq R \), both statements holding a.s., \(P^x \). Therefore

\[
P^x[X_T \in N, M_T > 0] = P^x[X_T \in N, T < R] \leq E^*[P^x(T)(R > 0), X_T \in N] = 0,
\]

since \(P^y (R>0) = 0 \) for all \(y \) in \(N \).

If \(T = \inf \{ t > 0, X_t \in N \} \) is a stopping time, then (1.2) can be replaced by \(P^x(M_T > 0, T < \infty) = 0 \) for all \(x \). This is the case if \(N \) is nearly analytic. The multiplicative functional defined in the second paragraph gives an example of a nonperfect multiplicative functional since any perfect multiplicative functional has the strong Markov property. (See [2, p. 136] for the definition of a perfect multiplicative functional.) As an example of a strongly Markov multiplicative functional for which the corresponding semi-group \(\{ Q_t \} \) is not exactly subordinate to \(\{ P_t \} \) (the semi-group of \(\{ X_t \} \)), let \(\{ X_t \} \) be translation to right along the real line at unit speed. Put \(M_t(\omega) = 0 \) if \(t + X_0(\omega) \geq 0 \) and \(X_0(\omega) \leq 0 \), and \(M_t(\omega) = 1 \) otherwise. It is easily verified that this example has the desired properties.

REFERENCES

UNIVERSITY OF WASHINGTON