A THEOREM ON GENERIC NORMS OF STRICTLY POWER ASSOCIATIVE ALGEBRAS

J. TITS

Let A be a finite-dimensional strictly power associative algebra with an identity element over an arbitrary field k, and let

$$m(x) = x^n + \sum_{i=1}^{n} \lambda_i(x)x^{n-i}$$

be its generic minimum polynomial [1]. The coefficients λ_i are polynomial functions on A. Such a function f is called a Lie invariant under a linear transformation L of the underlying vector space if $f(a+tL(a)) = f(a) \pmod{t^2}$ where t is an indeterminate and f is extended in the usual way to the vector space over $k(t)$; in particular, if f is a linear form on A (for instance the generic trace λ_1), this means that $f(L(a)) = 0$.

Theorem. The coefficients λ_i of the generic minimum polynomial are Lie invariant under every derivation d of A.

Assuming that A is a Jordan algebra (over a field of characteristic not two), that $i = 1$ and that d is the inner derivation which sends a into $b \cdot ac - ba \cdot c$, we have the

Corollary. The identity $\lambda_1(b \cdot ac) = \lambda_1(ba \cdot c)$ holds in any Jordan algebra.

This result has been obtained independently by N. Jacobson (unpublished).

Proof of the theorem. Let K be an arbitrary extension of k. The extensions of the forms λ_i and of the derivation d to A_K will be denoted by the same symbols λ_i and d. Let t be an indeterminate scalar and, for $a, b \in A_K$, denote by $\{a, b\}_i$ (resp. $\mu_i(a, b)$) the coefficient of t in $(a+tb)^i$ (resp. in $\lambda_i(a+tb)$). As $m(a+tb)$ vanishes identically, the coefficient of t in it must be zero, that is,

$$\{a, b\}_n + \sum_{i=1}^{n} \lambda_i(a) \cdot \{a, b\}_{n-i} + \sum_{i=1}^{n} \mu_i(a, b) \cdot a^{n-i} = 0 \quad (1)$$

It is easily seen that $d(a^i) = \{a, d(a)\}_i$; therefore

Received by the editors October 1, 1962.
\[d(m(a)) = \{ a, d(a) \} \cdot \sum_{i=1}^{n} \lambda_i(a) \cdot \{ a, d(a) \} \cdot a^{-i} = 0 \]

for every \(a \in A_K \). Setting \(b = d(a) \) in (1) and subtracting (2), we have

\[\sum_{i=1}^{n} \mu_i(a, d(a)) \cdot a^{-i} = 0. \]

If \(a \) is generic (over \(k \)), it does not satisfy any polynomial identity of order \(n - 1 \), with coefficients in \(K \); thus

\[\mu_i(a, d(a)) = 0, \]

and the same relations then hold for arbitrary \(a \in A_K \).

By the definition of the \(\mu_i(a, b) \) this is the Lie invariance of the \(\lambda_i(a) \) which we wished to prove.

Bibliography

Université de Bruxelles, Bruxelles, Belgium