

University of Alberta, Edmonton and University of Santa Clara

COMPLETELY WELL-POSED PROBLEMS FOR NONLINEAR DIFFERENTIAL EQUATIONS

M. D. GEORGE¹

1. Well-posed and completely well-posed problems for linear partial differential equations have been discussed by Hormander [2] and more recently and more generally by Browder [1]. Roughly speaking, if L is a differential operator in a Banach space X, the problem of finding a solution of $Lu = f$, $f \in X$, is said to be (completely) well-posed if the range of L is X and if in addition L^{-1} exists and is (completely) continuous. In both papers, sufficient conditions are given for the existence of well-posed and completely well-posed problems for formal differential operators.

In this paper we are interested in the effect on a completely well-posed problem of a nonlinear perturbation of the operator L. In particular, we will show (Theorem 3) that under certain conditions a completely well-posed problem for a differential operator L remains completely well-posed for $L + A$, where A is a nonlinear transformation in X. Combining this result with theorems in [1], conditions guaranteeing the existence of completely well-posed problems for perturbed differential operators can be derived. One such result is given in Theorem 4 for the case $X = L^2$.

2. Let X be a Banach space, T a transformation with domain $D(T) \subset X$ and range $R(T) \subset X$. The transformations here are not assumed to be linear unless it is so stated.

¹ This research was supported by the Air Force Office of Scientific Research.
Definition. The transformation T is said to be asymptotic to zero if $D(T) = X$ and
\[
\lim_{\|u\| \to \infty} \frac{\|Tu\|}{\|u\|} = 0.
\]
This definition is due to Krasnoselskiï and the following theorem, referred to in [3], to Dubrovskii, who used it in treating nonlinear integral equations. A proof of this theorem is included here for the convenience of the reader.

Theorem 1. If T is completely continuous and asymptotic to zero, then $R(I+T) = X$.

Proof. Let f be an arbitrary element of X. To prove that $u + Tu = f$ has a solution, it suffices to prove that the transformation S defined by $Su = f - Tu$ has a fixed point. Noting that S is completely continuous since T is, we need only show, using the Schauder theorem, that S maps some closed sphere of X into itself.

Let
\[
B_r(f) = \{ v \in X \mid \|v - f\| \leq r \}
\]
and suppose that for each integer $n > 0$, the set $SB_n(f)$ contains an element Su_n not in $B_n(f)$. Then the sequence $\{u_n\}$ has the property that $\|u_n - f\| \leq n$, while $\|Su_n - f\| = \|Tu_n\| > n$. Since T is completely continuous and the sequence $\{Tu_n\}$ is unbounded, $\{u_n\}$ is also unbounded. On the other hand $\|u_n\| \leq \|f\| + n$, so that
\[
\frac{\|Tu_n\|}{\|u_n\|} > \frac{n}{\|f\| + n}.
\]
But this contradicts the assumption that T is asymptotic to zero, since for such an operator $\|Tu\|/\|u\|$ cannot be bounded away from zero as u ranges over an unbounded set. Consequently, S maps some $B_n(f)$ into itself, completing the proof.

The main result of this section is:

Theorem 2. Let L be a linear transformation, not necessarily bounded, with domain $D(L) \subseteq X$ and $R(L) = X$, and suppose L has a completely continuous inverse. Let A be bounded, continuous, and asymptotic to zero. Then $R(L + A) = X$.

The proof will follow easily from Theorem 1 with the aid of the following lemma.

Lemma. If $D(A) = D(K) = X$, and K is linear and bounded while A
is bounded and asymptotic to zero, then \(AK \) is asymptotic to zero.

Proof. It will be convenient to introduce some additional notation. Since \(A \) is bounded, there is for each \(r \geq 0 \) a number \(s \geq 0 \) such that \(AB_r(0) \subset B_s(0) \), using the notation introduced in (1). Denote by \(M(r) \) the greatest lower bound of the set of such \(s \). Also, since \(A \) is asymptotic to zero, there is a real non-negative function \(P(e) \) defined for \(e > 0 \) such that \(\|Av\| < e\|v\| \) whenever \(\|v\| > P(e) \). Given \(e > 0 \), set \(\rho = P(e/\|K\|) \) (if \(K = 0 \) the lemma is trivial) and let \(u \) be any element of \(X \) such that \(e\|u\| > M(\rho) \). There are two cases to consider, according as \(\|Ku\| > \rho \) or \(\|Ku\| \leq \rho \). In the first case,

\[
\frac{\|AKu\|}{\|u\|} = \frac{\|AKu\|}{\|Ku\|} \frac{\|Ku\|}{\|u\|} \leq \frac{\|AKu\|}{\|Ku\|} \frac{\|K\|}{\|K\|} < \frac{e}{\|K\|} \|K\| = e
\]

while in the second case

\[
\frac{\|AKu\|}{\|u\|} < \frac{M(\rho)}{\|K\|} \leq \frac{\|K\|}{\|K\|} = e
\]

so that in any event, \(\|AKu\| < e\|u\| \) for \(\|u\| \) sufficiently large.

Proof of Theorem 2. Since \(D(L + A) = D(L) \), \((L + A)L^{-1} = I + AL^{-1} = I + T \) is everywhere defined and from the lemma, \(T \) is asymptotic to zero. Furthermore, since \(A \) is continuous and \(L^{-1} \) completely continuous, \(T \) is completely continuous. Thus \(R(I + T) = X \) by Theorem 1 and since \(R(L) = X \) by hypothesis, it follows that \(R(L + A) = R((I + T)L) = X \).

It should perhaps be noted here that Theorem 1 remains true under weaker hypotheses. For example, as is clear from the proof, one need only assume that for \(\|u\| \) sufficiently large, \(\|Tu\| \leq c\|u\| \) for some \(c < 1 \). However, if \(A \) has only this weaker property, \(T = AL^{-1} \) need not have, unless some restriction is made on \(\|L^{-1}\| \).

3. Let \(K \) be any transformation in \(X \). The problem of finding a solution \(u \in D(K) \) of \(Ku = f, f \in X \), is said to be (completely) well-posed if \(R(K) = X \) and \(K \) has a (completely) continuous inverse. In this section we wish to consider the case in which \(K \) is a differential operator and \(X \) is a complex \(L^p \) space, \(1 \leq p < \infty \). The description which follows is admittedly brief; full details can be found in [1].

Let \(G \) be a bounded, open subset of Euclidean \(n \)-space, \(n \geq 1 \). In now standard notation, we denote by

\[
P = \sum_{|\alpha| \leq m} a_\alpha(x) D^\alpha
\]

a linear differential operator of order \(m \), with coefficients \(a_\alpha(x) \) com-
plex-valued functions on \(G \), and by \(P' \), defined by

\[
P' u = \sum_{|\alpha| \leq m} D^\alpha (\bar{a}_\alpha(x) u)
\]

its formal adjoint. We first consider \(P \) and \(P' \) defined on \(C_0^\infty(G) \), the infinitely-differentiable complex functions with compact support in \(G \), and then close them as operators in \(L^p(G) \) and \(L^{p'}(G) \) respectively, where \(p' = p/(p-1) \). These new operators will be denoted by \(P_0 \) and \(P_0^* \). \(P_0 \) and \(P_1 \), the restricted adjoint of \(P_0^* \), are called the minimal and maximal operators associated with the formal differential operator \(P \). Let \(L \) be a closed linear operator with \(P_0 \subseteq L \subseteq P_1 \). If \(R(L) = L^p(G) \) and \(L \) has a (completely) continuous inverse, then \(L \) is said to be a (completely) solvable realization of the pair \((P_0, P_0^*) \) and the problem \(Lu = f \) is then (completely) well-posed.

Theorem 3. Let \(g(x, z) \) be a complex-valued function defined and uniformly continuous for \(x \in G \), all complex \(z \), such that

(2) \[
|g(x, z)| \leq c_1 |z|^a + c_2,
\]

where \(c_1, c_2, \) and \(a \) are non-negative constants and \(a < 1 \). Denote by \(A \) the operator in \(L^p(G) \) defined by \(Au(x) = g(x, u(x)) \). If \(L \) is a completely solvable realization of the pair \((P_0, P_0^*) \), then the problem \((L+A)u = f \), \(f \in L^p(G) \), is completely well-posed provided \(L+A \) has a continuous inverse.

Proof. The conditions imposed on \(g(x, z) \) insure that \(A \) is a bounded and continuous operator defined on \(L^p(G) \). (Actually, less will suffice to give the same result. References to papers giving results along this line can be found in [3].) That \(A \) is asymptotic to zero follows easily from (2) and hence \(R(L+A) = L^p(G) \) from Theorem 2. Since \(L+A \) has a continuous inverse by hypothesis, it remains only to show that in fact \((L+A)^{-1} \) is completely continuous. In view of the complete continuity of \(L^{-1} \), it suffices to show that if \(\{u_n\} \) is any sequence of elements in \(D(L) = D(L+A) \) such that the set \(\{ (L+A)u_n \} \) is bounded, then the set \(\{Lu_n\} \) is also bounded. Suppose then that \(\| (L+A)u_n \| < M \) while \(\{Lu_n\} \) is unbounded. Eliminating those \(n \)'s for which \(Lu_n = 0 \) and setting \(v_n = Lu_n \) for the remainder, we have

\[
\|AL^{-1}v_n\| = \|Au_n\| \geq \|Lu_n\| - M = \|v_n\| - M,
\]

so that

\[
\frac{\|AL^{-1}v_n\|}{\|v_n\|} \geq 1 - \frac{M}{\|v_n\|}.
\]

But, as in the proof of Theorem 1, this last inequality is impossible.
since AL^{-1} is asymptotic to zero. Thus $\{Lu_n\}$ is a bounded set and so $\{u_n\}$ has a convergent subsequence.

It is clear that the theorem could be immediately generalized to transformations of the form $L+KAM$, where A is as described in the theorem and K and M are linear and bounded. That KAM is asymptotic to zero follows easily from the lemma.

Finally, a word may be said about the existence of completely well-posed problems for the formal differential operator $P+A$. By combining these results with theorems of [1] and [2], a number of results can be obtained. One example will suffice to illustrate the idea.

Theorem 4. Let $p = 2$ and let $Au = g(x, u(x))$, where $g(x, z)$ satisfies the conditions of Theorem 3. Suppose P_0 and P_0^* have completely continuous inverses on their respective ranges. Then there exists a completely solvable realization L of the pair (P_0, P_0^*) and a number $c > 0$ such that if $|g(x, u) - g(x, v)| \leq c|u - v|$ for all complex u, v and all x in G, then the problem $(L+A)u = f, f \in L^2(G)$, is completely well-posed.

Proof. The existence of L follows from Theorem 1.2 of [2]. (The corresponding theorem for reflexive Banach spaces can be found in [1].) An easy calculation shows that if $|g(x, u) - g(x, v)| \leq c|u - v|$, where $c||L^{-1}|| < 1$, then for $u(x), v(x) \in D(L) = D(L+A),

$$\|u - v\| \leq ||L^{-1}||^2(1 - c||L^{-1}||)^{-1}||L + A||u - (L + A)v||.$$

Hence $L+A$ has a continuous inverse and the conclusion follows from Theorem 3.

Note that the constant c can be estimated from the construction of L^{-1} given in the proof of Theorem 1.2 in [2]. Hörmander also gives in [2] conditions which insure the complete continuity of P_0^{-1} and $(P_0^*)^{-1}$.

References

University of Missouri