ON THE POINT SPECTRUM OF POSITIVE OPERATORS

HELMUT H. SCHAEFER

1. Recently, G.-C. Rota proved the following result:

Let \((S, \Sigma, \mu)\) be a measure space of finite measure, \(P\) a positive
linear operator on \(L_1(S, \Sigma, \mu)\) with \(L_1\)-norm and \(L_\infty\)-norm at most one.
If \(\alpha, |\alpha| = 1\), is an eigenvalue of \(P\) such that \(\alpha f = Pf\) (\(f \in L_1\)), then \(\alpha^2\)
is an eigenvalue such that \(\alpha^2 |f|^2 = P(|f|^2 g^2)\), where \(g = |f| g\).

It can be added that \(\alpha^n |f|^n = P(|f|^n g^n)\) for every integer \(n\); thus
Rota proved for a fairly large class of operators, without compactness
assumptions, a result known (and due to Frobenius) for positive
finite square matrices, and known for certain types of positive oper-
ators under conditions guaranteeing that the spectrum intersects the
circumference of the spectral circle but in a finite set (see Karlin [1,
pp. 933–935] for an excellent survey and some more general exam-
pies). Simple but typical examples of operators showing the spectral
behavior exhibited in Rota’s theorem are the permutation matrices
on \(l_p\) (\(1 \leq p \leq \infty\)).

The purpose of this paper is to extend Rota’s result to a larger
class of spaces and operators. Apart from the particular type of un-
derlying space, the stringent condition in Rota’s theorem (supposing
that \(\mu(S) = 1\)) is \(r(T) = ||T||_1 = ||T||_\infty\), \(r(T)\) denoting the spectral radius
of \(T\) in \(L_1\) which is implicitly assumed to be one in [2]. From this,
we can drop the total finiteness of \(\mu\), the assumption \(||T||_1 = ||T||_\infty\) and
the requirement that \(L_\infty\) be invariant under \(T\) (\(T\) need indeed not
be defined on all of \(L_\infty\) when \(\mu(S)\) is infinite). More generally (Theo-
rem 1), the result is true for positive operators on any complex func-
tion space \(E\) of type \(L_p(S, \Sigma, \mu)\) or \(C(X)\) (\(X\) compact Hausdorff),
whenever \(T^* \psi \leq \psi\) for some strictly positive linear form \(\psi \in E'\). This
class includes all quasi-interior positive operators on \(C(X)\), for which
other spectral properties were obtained in [3]. More particularly, for
positive matrix operators on \(l_p\) satisfying the assumption above with
respect to some strictly positive linear form, the presence (assuming
\(r(T) = 1\)) of a single unimodular eigenvalue which is not a root of
unity, implies that the entire unit circle is in the point spectrum of \(T\)
(Theorem 2).

The assumption that \(T^* \psi \leq \psi\) for some strictly positive linear form,
in particular satisfied through \(||T||_1 = 1\) in Rota’s theorem, is by no
means necessary for the conclusion; it is made to ensure that

\[\text{Received by the editors September 26, 1962.}\]
\[\text{1 Work sponsored by the U. S. Army Research Office.}\]
\[\text{**E'** denotes the (topological) dual of E,} \, T^* \text{ the adjoint of T.}\]
\(\alpha f = T f \) \((|\alpha| = 1)\) implies \(|f| = T|f|\). To see how close this comes to what may be needed, we remark that every permutation matrix is the direct sum of a (possibly infinite) number of summands satisfying that assumption on a \(T \)-reducing subspace of \(l_p \).

2. In this section, we formulate the results and their immediate consequences. By \((S, \Sigma, \mu)\) we understand a measure space of finite or infinite measure, and by \(C(X) \) the \(B \)-space (under the sup-norm) of all continuous complex functions on a compact (Hausdorff) space \(X \). By a space of type \(C(X) \) we mean an ordered complex \(B \)-space which is (simultaneously algebraically, topologically, and order) isomorphic to some \(C(X) \) (but not necessarily isometric), and likewise for \(L_p(S, \Sigma, \mu) \) \((1 \leq p < \infty)\). \(J \) denotes the set of all rational integers.

Theorem 1. Let \(E \) be a space of type \(L_p(S, \Sigma, \mu) \) \((1 \leq p < \infty)\) or \(C(X) \), and let \(T \) be a positive linear operator on \(E \), with spectral radius \(1 \), such that \(T'|p'|^p \) for some strictly positive linear form on \(E \). Then:

If \(\alpha f = T f, \ |\alpha| = 1, \) then \(\alpha^n|f|^n = T(|f|^n) \) for every \(n \in J \), where \(f = |f| g \).

Corollary 1. Under the conditions of the theorem, the point spectrum of \(T \) on the unit circle consists either of a finite number of (groups of) roots of unity, or it is dense.

It is not difficult to see that Theorem 1 contains Rota’s theorem as a special case. In fact, if \(||T||_1 \leq 1 \), then \(T'\psi \leq \psi \) (and conversely), where \(\psi : f \to \|f\| d\mu \) is a strictly positive linear form on \(L_1(S, \Sigma, \mu) \).

There is another class of positive operators satisfying the condition of Theorem 1. A positive operator \(T \) on an ordered \(B \)-space \(E \) is called quasi-interior \([3]\) if there exists some \(\lambda_0 > r(T) \) such that \(TR(\lambda_0)x \) is a quasi-interior point of the positive cone \(K \) of \(E \), for each \(0 \neq x \in K \); \(x_0 \in K \) is quasi-interior if the order interval \([0, x_0]\) is a total subset of \(E \). (For more details on quasi-interior maps, see \([3]\).)

Corollary 2. The assertion of Theorem 1 is valid for every quasi-interior positive map on a space of type \(C(X) \).

Proof. It is known (see, e.g., [3, Theorem 1, Corollary]) that for any positive operator on \(C(X) \) with spectral radius \(r \), there exists a nonzero linear form \(\psi \geq 0 \) satisfying \(r\psi = T'\psi \). Since for every \(f \in C(X) \), and \(\lambda > r \),

\[
\psi(f) \sum_{n=1}^{\infty} \frac{r^n}{\lambda^n} = \psi[TR(\lambda)f],
\]

\[\text{This is meant to include the case of empty point spectrum on } |\lambda| = 1.\]
it follows that ψ is strictly positive when T is quasi-interior and $r > 0$.

If T is an operator on a space l_p ($1 \leq p \leq \infty$), represented by a positive matrix, we obtain the following stronger result.

Theorem 2. Let T be a positive matrix operator on some space l_p ($1 \leq p \leq \infty$), satisfying the assumptions of Theorem 1. If T has a unimodular eigenvalue which is not a root of unity, then the entire unit circle belongs to the point spectrum of T.

On the other hand, it results from the proof of Theorem 2 that if such a matrix has strictly positive diagonal entries, its point spectrum on the unit circle can at most contain the number 1.

3. The proof of Theorems 1 and 2 is divided into several steps. Unless any further distinction is needed, we denote by E any Banach space of the type considered in Theorem 1.

(a) For any $f \in E$ and positive linear operator T on E, $|Tf| \leq T|f|$. Let s be a fixed element of S (or X, respectively). We have $|Tf| (s) = (T\bar{f})(s)$ where $\bar{f} = fe^{i\delta}$ and $\delta = \delta(s)$ is suitably chosen. Let $\bar{f} = g + ih$, g and h denoting the real and imaginary parts of f, respectively. Now $T\bar{f} = Tg + iT\bar{h}$, and $T\bar{h}(s) = 0$ since Tg, $T\bar{h}$ are real-valued elements of E. Hence we have

$$T\bar{f}(s) = Tg(s) \leq T|f|(s)$$

since $|g| \leq |\bar{f}| = |f|$, whence it follows that $|Tf|(s) \leq T|f|(s)$. s being arbitrary, we conclude that $|Tf| \leq T|f|$.

(b) If $\alpha f = Tf$ where $0 \neq f \in E$ and $|\alpha| = 1$, it follows that $|f| = |Tf|$ and hence, by (a), that $|f| \leq T|f|$. By assumption, there exists a strictly positive linear form satisfying $T^* \psi \leq \psi$; hence $\psi(|f|) \leq \psi(T|f|)$ and, therefore, $\psi(T|f| - |f|) = 0$. Since ψ is strictly positive, $|f| = T|f|$.

(c) Let $H_0 = \{ t : |f(t)| > 0 \}$, and let F denote the vector subspace of E whose elements are of the form $|f|g$, $g \in G$, where G is the vector space of all bounded Σ-measurable or all bounded continuous functions (accordingly as $E = L_p(S, \Sigma, \mu)$ or $E = C(X)$), on H_0. Since $|Tf|g| \leq ||g||_{\infty}T|f|$, F is invariant under T. The formula

$$(Ug)(s) = |f(s)|^{-1} T|f|g(s) \quad (s \in H_0)$$

defines a positive endomorphism of G. Endowed with the sup-norm, G is isomorphic (even isometric) with a space $C(Y)$, Y compact. This is clear when $E = L_p$ (more precisely, one will consider the quotient space of G modulo μ-null functions), from the Gelfand-Naimark theorem; the same conclusion holds when $E = C(X)$, but here, more concretely, G is isomorphic with $C(Y)$, where Y is the Stone-Čech compactification of X.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
compactification of $H_0 \subset X$. Thus in any case, we can associate with f, satisfying $|f| = T|f|$, a positive operator U on $C(Y)$ such that $Ue = e$ (the constantly-one function on Y), and hence $\|U\| = 1$.

(d) We write $f = |f| g$, where g is well defined on H_0; moreover, $|g| = e$ and $\alpha g = Ug$ since $\alpha f = Tf$ by assumption. We identify G and $C(Y)$ in the spirit of the preceding paragraph. For each $s \in Y$, the mapping $h \mapsto (Uh)(s)$ defines a positive Radon measure m_s, of mass 1, on Y. The remainder of the proof rests on the following lemma.

Lemma. Let $g \in C(Y)$ satisfy $|g| = e$, and let $s \in Y$ be arbitrary. If $\alpha g = Ug$, $|\alpha| = 1$, then the support of m_s is contained in $\{ t \in Y : g(t) = \alpha g(s) \}$.

The proof of this lemma is elementary, and will be omitted. Now let n be any integer. Since for fixed s, $g(l) = \alpha g(s)$ on the support of m_s, it follows that

$$(Ug^n)(s) = \int g^n(l) \, dm_s(l) = \alpha^n g^n(s),$$

$s \in Y$, which proves that $\alpha^n g^n = Ug^n$. Translating back into E, we obtain $\alpha^n |f| g^n = T(|f| g^n)$, completing the proof of Theorem 1.

(e) It remains to prove Theorem 2. Let $A = (a_{ik})$ be the matrix representing the operator T, and let $\alpha x = Ax$ where $x \neq 0$ is a vector in l_∞ and $|\alpha| = 1$, is not a root of unity. It follows from Theorem 1 that $|x| = A |x|$. As in (c) above, we associate with A an operator U on $l_\infty(H_0)$ where H_0 is the set of subscripts on which the coordinates of x are nonzero; more precisely, U is represented by the matrix (u_{ik}), where $u_{ik} = |x_i|^{-1} a_{ik} |x_k|$ for $i, k \in H_0$. Let $x_i = |x_i| v_i$ for $i \in H_0$, $v = (v_i)$. Further, denote by Γ a set of representatives of the quotient group of the group of unimodular complex numbers over the subgroup $\{ \alpha^n : n \in J \}$. If $F_n = \{ j \in H_0 : v_j \in \alpha^n \Gamma \}$, $n \in J$, the F_n are disjoint sets whose union is H_0.

From $\alpha v = Uv$ it follows, as in the lemma in (d), that if $v_i = \tau$ then $v_j = \alpha \tau$ for all j such that $u_{ij} > 0$ ($i, j \in H_0$). (In fact, the lemma can be formally applied since $v \mapsto (Uv)_i$ is a Baire measure on the locally compact, discrete space H_0.) Denoting by $x^{(n)}$ the “characteristic” vector of F_n in $l_\infty(H_0)$, we conclude that $Ux^{(n+1)} = x^{(n)}$. Moreover, the $x^{(n)}$ are mutually disjoint and $\sum \{ x^{(n)} : n \in J \} = e$, the constantly-one function on H_0.

Now let β be any unimodular complex number. Letting

$$w = \sum_{n \in J} \beta^n x^{(n)},$$

4 At this point the assumption that T be a matrix operator is essentially used.
it follows that $Uw = \beta w$, hence β is in the point spectrum of U. Set
$y = (y_i)$, where $y_i = |x_i| w_i$ for $i \in H_0$ and $y_i = 0$ for $i \in H_0$. It is im-
mediate that $Ty = \beta y$ whence the theorem follows.

References

2. G.-C. Rota, *On the eigenvalues of positive operators*, Bull. Amer. Math. Soc. 67
 Math. 10 (1960), 1009–1019.

University of Michigan