A CLASS OF UNIVALENT FUNCTIONS

THOMAS H. MACGREGOR

1. Introduction. The condition Re \(f'(z) > 0 \) is known to be sufficient for the univalence of an analytic function in any convex domain. In a recent paper \([3]\) the author investigated the class of functions which satisfy Re \(f'(z) > 0 \) for \(|z| < 1 \) and are normalized by \(f(0) = 0, f'(0) = 1 \). In this paper we study the subclass denoted by \(F \) and defined by the condition \(|f'(z) - 1| < 1 \) for \(|z| < 1 \). Some of our results have already been proven for the particular functions in \(F \) whose coefficients satisfy \(\sum_{n=2}^{\infty} n|a_n| \leq 1 \). Particular reference should be made of a paper by Schild \([5]\).

2. Distortion theorems. Suppose that \(f(z) \in F \). By applying Schwarz's lemma to the function \(f'(z) - 1 \) we obtain \(|f'(z) - 1| \leq |z| \). This gives the estimates \(1 - |z| \leq |f'(z)| \leq 1 + |z| \). Bounds for \(|f(z)| \) can be obtained from \(|f'(z) - 1| \leq |z| \) by integration, as follows. Integrating along the line segment from 0 to \(z \) we may write

\[
f(z) - z = \int_0^z (f'(s) - 1) \, ds = z \int_0^1 (f'(tz) - 1) \, dt.
\]

\[
|f(z) - z| \leq |z| \int_0^1 |f'(tz) - 1| \, dt \leq |z| \int_0^1 t |z| \, dt = (1/2) |z|^2.
\]

From this estimate for \(|f(z) - z| \) we immediately obtain

\[
|z| - (1/2) |z|^2 \leq |f(z)| \leq |z| + (1/2) |z|^2.
\]

Each estimate is precise only for the functions \(f(z) = z + a_2 z^2 \), where \(|a_2| = 1/2 \).

The bounds for \(|f(z)| \) imply the following theorem.

Theorem 1. Each function in \(F \) assumes every complex number in the circle \(|w| < 1/2 \). No values outside of the circle \(|w| < 3/2 \) are assumed.

Received by the editors January 22, 1963.

1 Most of the results in this paper are contained in the author's dissertation, which was completed at the University of Pennsylvania in June, 1961.

2 The preparation of this paper was partially supported by the National Science Foundation under the grant NSF-GP-161.
3. **An area theorem.** If \(g(z) = \sum_{n=0}^{\infty} b_n z^n \) is regular for \(|z| < 1 \) and \(|g(z)| \leq 1 \) then \(\sum_{n=0}^{\infty} |b_n|^2 \leq 1 \) [1 p. 7]. Applying this estimate to \(f'(z) - 1 \) where \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in F \) we get \(\sum_{n=2}^{\infty} n^2 |a_n|^2 \leq 1 \). We will use this estimate in the next theorem. It also shows that the coefficients of functions in \(F \) satisfy \(|a_n| \leq 1/n \) for \(n = 2, 3, \ldots \) and equality for a given \(n \) holds only for functions of the form \(f(z) = z + a_n z^n \).

Theorem 2. The area of the image of \(|z| < 1 \) under each function in \(F \) satisfies \(A \leq (3/2)\pi \).

Proof. Suppose that \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in F \) and \(0 < r < 1 \). Let \(D_r \) and \(D \) be the images of \(|z| < r \) and \(|z| < 1 \) under \(f(z) \) and let \(A_r \) and \(A \) be the areas of \(D_r \) and \(D \). The area of \(D \) exists since \(D \) is open and bounded. \(A_r \) is given by the following well-known formula.

\[
A_r = \pi \left(r^2 + \sum_{n=2}^{\infty} n |a_n|^2 r^{2n} \right).
\]

We will prove that

\[
A = \pi \left(1 + \sum_{n=2}^{\infty} n |a_n|^2 \right).
\]

The convergence of this series follows from the fact that \(\sum_{n=2}^{\infty} n^2 |a_n|^2 \) converges. Let \(\{r_n\} \) be any increasing sequence of positive numbers such that \(r_n \rightarrow 1 \). Then \(\{D_{r_n}\} \) is an increasing sequence of sets whose union is \(D \). From the theorem in measure theory \(A_{r_n} \rightarrow A \). However the convergence of (1) implies that \(A_r \) is continuous for \(0 \leq r \leq 1 \). Consequently \(A_{r_n} \rightarrow A_1 \). This proves (1).

From (1) and \(\sum_{n=2}^{\infty} n^2 |a_n|^2 \leq 1 \), we obtain

\[
A = \pi \left(1 + \sum_{n=2}^{\infty} n |a_n|^2 \right) \leq \pi \left(1 + (1/2) \sum_{n=2}^{\infty} n^2 |a_n|^2 \right) = (3/2)\pi.
\]

This proves \(A \leq (3/2)\pi \) and \(A = (3/2)\pi \) only for the functions \(f(z) = z + a_2 z^2 \) where \(|a_2| = 1/2 \).

4. **The boundary of the image domain.**

Theorem 3. Each function in \(F \) maps \(|z| < 1 \) onto a domain whose boundary is a rectifiable Jordan curve.
Proof. If \(f(z) \in F \) then \(|f'(z)| < 2 \). From \(f(z_2) - f(z_1) = \int_{z_1}^{z_2} f'(z) \, dz \) we obtain \(|f(z_2) - f(z_1)| \leq 2 |z_2 - z_1|\). This implies that \(f(z) \) is uniformly continuous in \(|z| < 1\) and consequently can be extended continuously onto \(|z| = 1\). Let \(C \) be defined by \(w = f(e^{i\theta}) \), \(0 \leq \theta \leq 2\pi \).

Let us prove that \(C \) is rectifiable. This follows easily from the estimate \(|f(z_2) - f(z_1)| \leq 2 |z_2 - z_1|\) for \(|z_1| = |z_2| = 1\). Namely, if \(0 = \theta_0 < \theta_1 < \theta_2 < \cdots < \theta_n = 2\pi \) then

\[
\sum_{k=1}^{n} |f(e^{i\theta_k}) - f(e^{i\theta_{k-1}})| \leq 2 \sum_{k=1}^{n} |e^{i\theta_k} - e^{i\theta_{k-1}}| < 4\pi.
\]

Next we show that each function \(f(z) \) in \(F \) is univalent in \(|z| \leq 1\). This follows from the facts: \(\Re f'(z) > 0 \) for \(|z| < 1\) and \(f(z) \) is continuous in \(|z| \leq 1\). It suffices to prove that \(f(z) \) is univalent on \(|z| = 1\). Suppose that \(z_1 \neq z_2 \), \(|z_1| = |z_2| = 1\). Let \(l \) denote the line segment from \(z_1 \) to \(z_2 \). We will consider several points, denoted by \(z_3, z_4, z_5, z_6, z_7, z_8 \). These will be distinct points on \(l \) and arranged in the order as written. Fix \(z_4 \) and then choose \(z_3 \) and \(z_6 \) such that \(\Re f'(z) \leq (1/2) \Re f'(z_4) \) for all points on \(l \) between \(z_3 \) and \(z_6 \). Then, integrating along \(l \) we obtain

\[
|f(z_3) - f(z_1)| = \int_{z_1}^{z_3} f'(z) \, dz
\]

\[
\geq (1/2) |z_3 - z_1| \Re f'(z_4) = a.
\]

With \(z_3, z_4, z_5 \) fixed we can choose \(z_1 \) and \(z_2 \) so close to \(z_1 \) and \(z_2 \) that

\[
|f(z_2) - f(z_1) - (f(z_1) - f(z_1))| < a.
\]

Therefore, \(f(z_2) - f(z_1) \neq 0 \). This proves that \(f(z) \) is univalent in \(|z| \leq 1\). In particular this shows that \(C \) is simple.

Theorem 4. Suppose \(0 < r < 1 \). The length of the image of \(|z| = r\) under functions in \(F \) is maximal for \(f_0(z) = z + (1/2)z^2 \). Moreover, this length is less than 8.

Proof. Suppose that \(f(z) \in F \) and \(L_r(f) \) is the length of the image of \(|z| = r\) under \(f(z) \). Since \(|f'(z) - 1| < 1\) and \(f''(z) - 1 \) vanishes at \(z = 0 \), \(f'(z) \) is subordinate to \(f_0'(z) = 1 + z \) in \(|z| < 1\). J. E. Littlewood [2, p. 484, Theorem 2] has shown that if \(h(z) \) is subordinate to \(H(z) \) in \(|z| < 1\) then

\[
\int_{0}^{2\pi} |h(re^{i\theta})|^2 \, d\theta \leq \int_{0}^{2\pi} |H(re^{i\theta})|^2 \, d\theta,
\]
for any $k > 0$. Applying this result to $f'(z)$ for $k = 1$ we prove one part of the theorem, as follows.

$$L_r(f) = r \int_0^{2\pi} |f'(re^{i\theta})| \, d\theta \leq r \int_0^{2\pi} |f''(re^{i\theta})| \, d\theta = L_r(f_0).$$

$L_r(f) < 8$ will hold if we prove $L_r(f_0) < 8$. If $R \geq 1$ then $f'(z) = 1 + z$ is subordinate to $w = 1 + Rz$ in $|z| < 1$. With $R = 1/r$ we again apply Littlewood’s inequality.

$$L_r(f_0) < \int_0^{2\pi} |f'(re^{i\theta})| \, d\theta$$

$$\leq \int_0^{2\pi} |1 + e^{i\theta}| \, d\theta$$

$$= 2 \int_0^{2\pi} |\cos(\theta/2)| \, d\theta$$

$$= 8.$$

Remarks. 1. It seems likely that the length of the boundary of the image of $|z| < 1$ under each function in F satisfies $L \leq 8$. This could not be improved since $L = 8$ for the functions $f(z) = z + a_n z^n$, $|a_n| = 1/n$, $n = 2, 3, \ldots$.

2. Littlewood’s inequality for $k = 2$ gives another proof of the estimate $A \leq (3/2)\pi$ in Theorem 2.

5. Radii of convexity and starlikeness.

Theorem 5. Each function in F maps $|z| < 1/2$ onto a convex domain.

Proof. Suppose that $f(z) \in F$. Then $f'(z) = 1 + zg(z)$, where $g(z)$ is regular for $|z| < 1$ and $|g(z)| \leq 1$. For such functions we have the estimate

$$|g'(z)| \leq \frac{1 - |g(z)|^2}{1 - |z|^2}$$

[4, p. 168]. Also,

$$\frac{f''(z)}{f'(z)} = \frac{g(z) + zg'(z)}{1 + zg(z)}.$$

Using the triangle inequalities and then the estimate for $|g'(z)|$ we find that

$$\left|\frac{f''(z)}{f'(z)}\right| \leq \frac{|g(z)| + |z|}{1 - |z|^2}.$$
Since \(|g(z)| \leq 1\) we obtain
\[
\left| \frac{f''(z)}{f'(z)} \right| \leq \frac{1}{1 - |z|}.
\]

The condition \(\text{Re}\left\{zf''(z)/f'(z) + 1\right\} > 0\) for \(|z| < r\) is necessary and sufficient for \(f(z)\) to map \(|z| < r\) onto a convex domain. This condition is satisfied if \(|zf''(z)/f'(z)| < 1\). Thus, \(f(z)\) is convex if \(|z|/(1 - |z|) < 1\), i.e., if \(|z| < 1/2\).

It is not difficult to see that \(f(z) = z + a_2z^2, \ |a_2| = 1/2\), are the only functions in \(F\) which are not convex in \(|z| < r\) for some \(r > 1/2\).

Theorem 6. Each function in \(F\) maps \(|z| < (4/5)^{1/2}\) onto a domain which is starlike with respect to the origin.

Proof. The condition \(\text{Re}\left\{zf''(z)/f'(z)\right\} > 0\) for \(|z| < r\) is necessary and sufficient for \(f(z)\) to be starlike in \(|z| < r\). In §2 we proved that \(|f'(z) - 1| \leq |z|\) and \(|f(z) - z| \leq (1/2)|z|^2\) if \(f(z) \in F\). Taking advantage of the geometric location of \(f'(z)\) and \(f(z)/z\) as given by these inequalities we obtain
\[
\left| \arg f'(z) \right| \leq \sin^{-1} |z|, \quad \left| \arg \frac{f(z)}{z} \right| \leq \sin^{-1} (|z|/2).
\]

If \(|z| < (4/5)^{1/2}\) then \(\sin^{-1}|z| + \sin^{-1}(|z|/2) < \pi/2\). Therefore, for \(|z| < (4/5)^{1/2}\) we have
\[
\left| \arg \frac{zf'(z)}{f(z)} \right| \leq \left| \arg f'(z) \right| + \left| \arg \frac{f(z)}{z} \right| < \pi/2,
\]
i.e., \(\text{Re}\left\{zf''(z)/f'(z)\right\} > 0\) for \(|z| < (4/5)^{1/2}\).

The estimates used in this proof are precise only for the functions \(f(z) = z + a_2z^2\), where \(|a_2| = 1/2\). Since these functions map the whole circle \(|z| < 1\) onto a starlike domain, \((4/5)^{1/2}\) is not the radius of starlikeness for the class \(F\).

6. Functions with initial zero coefficients. Some of the results obtained for functions in \(F\) can be improved if \(f(z)\) has the form \(f(z) = z + a_nz^n + a_{n+1}z^{n+1} + \cdots\). In this situation we can write \(f'(z) - 1 = z^{n-1}g(z)\), where \(g(z)\) is regular for \(|z| < 1\) and \(|g(z)| \leq 1\). With this as the starting point we can argue as in §§2 and 3 to prove the following theorem. The extremal functions for this theorem are \(f(z) = z + a_nz^n\), where \(|a_n| = 1/n\).
Theorem 7. Suppose that \(f(z) = z + a_1z^n + a_{n+1}z^{n+1} + \cdots \in F \). Then
\(f(z) \) assumes all values in the circle \(|w| < 1 - (1/n) \). No values outside of the circle \(|w| < 1 + (1/n) \) are assumed. The area of the image domain satisfies \(A \leq \pi (1 + 1/n) \).

Theorem 8. If \(f(z) = z + a_1z^n + a_{n+1}z^{n+1} + \cdots \in F \) then \(f(z) \) maps \(|z| < (1/n)^{1/(n-1)} \) onto a convex domain.

Proof. From \(f'(z) - 1 = z^{n-1}g(z) \) it follows that

\[
\frac{f''(z)}{f'(z)} = z^{n-2} \frac{(n-1)g(z) + zg'(z)}{1 + z^{n-1}g(z)}.
\]

Using the triangle inequalities and then the estimate \(|g'(z)| \leq (1 - |g(z)|^2)/(1 - |z|^2) \), we obtain

\[
\left| \frac{f''(z)}{f'(z)} \right| \leq \frac{|z|^{n-2}}{1 - |z|^2} \left| z + (n-1)(1 - |z|^2)g(z) \right| \left| 1 - |z|g(z) \right|^2.
\]

To estimate the right side of this inequality let us consider the function

\[
y = a + (n-1)(1-a^2)x - ax^2,
\]

\[
a = |z|, \quad x = |g(z)|, \quad 0 < a < 1, \quad 0 \leq x \leq 1.
\]

\[
p = (1-a^{n-1}x)^2 \frac{dy}{dx} = (n-1)(1-a^2) + a^n - 2ax + anx^2
\]

\[
\frac{dp}{dx} = 2a(a^{n-1}x - 1) < 0.
\]

Thus \(p \) is decreasing.

\[
p(x) \geq p(1) = (n-1)(1-a^2) - 2a(1-a^{n-1})
\]

\[
= (1-a)[(n-1)(1+a) - 2a(1+a + a^2 + \cdots + a^{n-2})]
\]

\[
> (1-a)[(n-1)(1+a) - 2a(n-1)]
\]

\[
= (n-1)(1-a)^2 > 0.
\]

Thus \(y \) is an increasing function. Therefore

\[
y(x) \leq y(1) = \frac{(n-1)(1-a^2)}{1-a^{n-1}},
\]

\[
\left| \frac{f''(z)}{f'(z)} \right| \leq \frac{(n-1)|z|^{n-2}}{1 - |z|^{n-1}}.
\]
If \(|zf''(z)/f'(z)| < 1\) then \(f(z)\) is convex. Thus, \(f(z)\) is convex if
\[(n-1)|z|^{n-1}/(1-|z|^{n-1}) < 1, \]
and if \(|z| < (1/n)^{1/(n-1)}\).

The functions \(f(z)=z+a_nz^n, \ |a_n|=1/n,\) are extremal, i.e., they
are the only functions in \(F\) of the form \(f(z)=z+a_nz^n+a_{n+1}z^{n+1}+\cdots\)
which are not convex in some circle \(|z| < r, r > (1/n)^{1/(n-1)}\).

References

Lafayette College