AN ARITHMETIC PROPERTY OF RIEMANN SUMS

WALTER RUDIN

If \(f \) is a real function on the real line, periodic with period 1, define

\[
(M_n f)(x) = \frac{1}{n} \sum_{i=1}^{n} f\left(x + \frac{i}{n}\right) \quad (n = 1, 2, 3, \ldots).
\]

Writing \(\int f \) for the integral of \(f \) over \([0, 1]\), the relation

\[
\lim_{n \to \infty} (M_n f)(x) = \int f
\]

holds for all real \(x \) if \(f \) is Riemann integrable on \([0, 1]\). In the present note it is shown that there are bounded measurable functions \(f \) for which (2) is false for every \(x \) and that this convergence problem has some interesting number-theoretic aspects.

In 1934, Jessen [1] proved that if \(f \in L^1 \) on \([0, 1]\) and if \(\{n_k\} \) is an increasing sequence of positive integers in which each term divides the next, then

\[
\lim_{k \to \infty} (M_{n_k} f)(x) = \int f
\]

for almost all \(x \).

In 1948, Salem [2] showed that (3) holds for almost all \(x \) if the integral modulus of continuity of \(f \) satisfies a certain condition and if \(\{n_k\} \) satisfies a corresponding lacunarity condition. Salem's condition involves only the rate of growth of \(\{n_k\} \); no divisibility assumptions appear.

In the opposite direction, it is known (I am indebted to the referee for mentioning [4] and [5]) that there are functions \(f \in L^1 \) for which (2) fails almost everywhere. For example, if \(0 < \alpha < 1/2 \), define

\[
f(x) = |x|^{-1+\alpha} \quad (|x| \leq 1/2)
\]

and define \(f(x) \) for all other \(x \) by periodicity. For every irrational \(x \), there are infinitely many integers \(n \) such that

\[
\left| x - \frac{m}{n} \right| < \frac{1}{n^2}
\]
for some integer m; if (5) holds, then $f(x - m/n) > 1/n^2 = n^{1-2\alpha}$ so that $(M_nf)(x) > n^{1-2\alpha}$. Thus

$$\limsup_{n \to \infty} (M_nf)(x) = +\infty$$

for almost all x. If $p < 2$, we may choose α so that $1 - 1/p < \alpha < 1/2$, and thus get examples of $f \in L^p$ for which (6) holds almost everywhere.

This crude method does not settle the problem for L^2, nor, a fortiori, for bounded measurable functions. However, (2) fails even there, and it turns out that arithmetic properties of $\{n_k\}$ are crucial; Remark (A) at the end of this note makes this very evident.

Theorem. Let S be a sequence of positive integers which contains sets S_N ($N = 1, 2, 3, \ldots$), each consisting of N terms, such that no member of S_N divides the least common multiple of the other members of S_N.

Then to every $\epsilon > 0$ there exists a bounded measurable function f, periodic with period 1, such that $0 \leq f \leq 1$, and such that

$$\limsup_{n \to \infty} (M_nf)(x) \geq \frac{1}{2}$$

for all x, although $\int f \leq \epsilon$.

For instance, S could be any sequence of primes.

In the proof, f is constructed as the characteristic function of an open set.

Proof. We may assume, without loss of generality, that the sets S_N are pairwise disjoint.

Fix $N > 2$, choose $\delta > 0$ such that $\delta^N = N^{-1}(\log N)^{-2}$, let g and h be the characteristic functions of sets G and H, where G is the union of the segments $(k, k + \delta)$ ($k = 0, \pm 1, \pm 2, \ldots$), and H is the complement of G. If n_1, \ldots, n_N are the members of S_N, let k_i be the least common multiple of $n_i, \ldots, n_{i-1}, n_{i+1}, \ldots, n_N$, for $i = 1, \ldots, N$. We can then find integers p_1, \ldots, p_N, each so much larger than the preceding one that the following is true: if

$$\phi_N(l) = \prod_{i=1}^{N} g(k_i p_i),$$

$$\psi_{j,N}(l) = h(k_j p_i) \prod_{i \neq j} g(k_i p_i) \quad (1 \leq j \leq N),$$

then $\int \phi_N$ and $\int \psi_{j,N}$ differ by as little as we please from the products

$$\left(\int g \right)^N = \delta^N$$

and
Put $A_N = B_{1,N} \cup \cdots \cup B_{N,N}$, where $B_{j,N}$ is the set whose characteristic function is $\psi_{j,N}$. Since the sets $B_{1,N}, \cdots, B_{N,N}$ are pairwise disjoint, and since

$$N(1 - \delta)^{N-1} = N\delta^N \left(\frac{1}{\delta} - 1\right) > N\delta^N(N^{1/N} - 1) > \delta^N \log N,$$

we see from (7) and (8) that p_1, \cdots, p_N can be so chosen that

$$\sum_{n=1}^{N} m(A_n) > \frac{1}{N \log N},$$

where $m(A_N)$ denotes the Lebesgue measure of $A_N \cap [0, 1]$. Moreover, p_1, \cdots, p_N can be chosen to be primes which divide no member of S_N

Suppose now that $x \in B_{j,N}$. Then $k_ip_jx \in G$ if $i \neq j$, and $k_jp_jx \in H$. Since n_j divides k_i if $i \neq j$, we have

$$k_i p_i \left(x + \frac{r}{n_j} \right) \equiv k_i p_i x \pmod{1}$$

if $i \neq j$ and $r = 1, \cdots, n_j$. But n_j does not divide $k_j p_j$ (this is where the arithmetic hypothesis imposed on S_N is used), and therefore the terms of the arithmetic progression

$$k_j p_j \left(x + \frac{r}{n_j} \right) \pmod{1}$$

for all $x \in B_{j,N}$, and (12) implies that

$$\max_{n \in S_N} (M_n \phi_N)(x) \geq \frac{1}{2} \quad (x \in A_N).$$

By (9), $\sum m(A_N) = \infty$. Hence there is a sequence $\{\alpha_N\}$ of real numbers such that almost every x lies in infinitely many of the translates $A_N + \alpha_N$ (see [3, p. 165, Lemma 1.24]). Choose N_0 so that

$$4 \sum_{N_0}^{\infty} N^{-1}(\log N)^{-2} < \epsilon$$

and put
\[
\phi(t) = \sup_{N \geq N_0} \phi_N(t - \alpha_N).
\]

Then (13) implies
\[
\limsup_{n \in S} (M_n \phi)(x) \geq \frac{1}{2}
\]
for almost all \(x\), although \(\int \phi \leq \epsilon/2\), by (9) and (14).

If now \(E\) is the set of measure 0 on which (16) fails, let \(\chi\) be the characteristic function of a periodic open set \(V\) which contains \(E + r\) for all rational numbers \(r\), and such that \(m(V) < \epsilon/2\). Setting \(f = \max(\phi, \chi)\), we obtain a function which has the properties asserted by the theorem.

Remarks. (A) There are sequences \(\{n_k\}\) which satisfy the hypothesis of Jessen's theorem but such that \(\{1 + n_k\}\) is a sequence of primes. To see this, suppose \(n_k\) is chosen; by Dirichlet's theorem on primes in arithmetic progressions, there is an integer \(r > 1\) such that \(q = 1 + rn_k\) is prime; put \(n_{k+1} = rn_k\).

Thus \(\{(M_{n_k} f)(x)\}\) converges to \(f\) a.e. although the sequence \(\{(M_{1+n_k} f)(x)\}\) need not do so.

(B) Take \(\epsilon_k = 2^{-k}\) in our theorem, let \(f_k (f = 1, 2, 3, \cdots)\) be the corresponding functions, and put \(F = \sum k f_k\). Then \(F \in L^p\) on \([0, 1]\) for every \(p < \infty\), but
\[
\limsup_{n \in S} (M_n F)(x) = +\infty
\]
for every \(x\).

(C) It is easy to see that \(M_nf \rightarrow f\) in the \(L^p\)-norm, as \(n \rightarrow \infty\), for every \(f \in L^p\), if \(1 \leq p < \infty\). Hence for every \(f \in L^1\) there is a sequence \(\{n_k\}\) such that (3) holds almost everywhere.

References

University of Wisconsin