AN ISOPERIMETRIC INEQUALITY

F. J. ALMGREN, JR.

If \(f \) maps the \(k \)-cube \(I^k \) into \(R^n \) so that the images of opposite \(k-1 \) faces of \(I^k \) are at least distance \(b \) apart, it is plausible that the volume of \(f \) can be no smaller than \(b^k \). This is true if \(f \) is Lipschitzian and is established as a corollary to the more general theorem below. This problem was suggested by D. C. Spencer, who together with S. Bergman proved it for \(k = 2 \) in [2].

DEFINITIONS.

1. \(I_*(R^n) = \bigoplus I_j(R^n) \) is the chain complex of integral currents in \(R^n \) with boundary homomorphism \(\partial \) as defined in [3]. The mass of a current \(T \) is written \(M(T) \). For \(T \subseteq I_0(R^n) \) let \(M_0(T) \) be the absolute value of the coefficient sum of \(T \).

2. \(\sigma^k \) is the cell complex of the \(k \)-cube \(I^k \), i.e., the chain complex generated by the cubical faces of \(I^k \) of various dimensions. \(\sigma^1 \) is generated by \{ \([0, 1], [0], [1] \) \} with \(d[0, 1] = [1] - [0] \), \(d[0] = d[1] = 0 \). \(\sigma^2 \) is generated by \{ \([0, 1] \times [0, 1], [0, 1] \times [1], [0] \times [0], \) \dots \}, etc. Let \(\alpha^k = [0, 1] \times \cdots \times [0, 1] \) be the unique \(k \) cell in \(\sigma^k \), and let \(\alpha^k(i, \epsilon), i = 1, 2, \cdots, k, \epsilon = 0, 1 \) denote the \(k-1 \) cell obtained by setting the \(i \)th coordinate equal to \(\epsilon \).

3. For \(A \subseteq R^n \) define \(u_A : R^n \to R^n, u_A(x) = \text{distance} (x, A) \). Set \(U_r = R^n \cap \{ x : u_A(x) < r \} \) for \(r \in R \). Note that \(u_A \) satisfies a Lipschitz condition with constant 1 for any \(A \).

THEOREM. Let \(F : \sigma^k \to I_*(R^n) \) be a chain map of degree 0 such that

1. For some 0 cell (vertex) \(v \in \sigma^k \), \(M_0(F(v)) \geq 1 \).
2. \(\text{inf} \{ |x - y| : x \in \text{support} (F(\beta)), y \in \text{support} (F(\gamma)) \} \geq b \), whenever \(\beta \) is a face of \(\alpha^k(i, 0) \) and \(\gamma \) is a face of \(\alpha^k(i, 1) \) for some \(i = 1, 2, \cdots, k \).

Then \(M(F(\alpha^k)) \geq M_0(F(v)) \cdot \prod_{i=1}^k b_i \).

LEMMA. Let \(A \) and \(B \) be subsets of \(R^n \) with \(\text{inf} \{ |x - y| : x \in A, y \in B \} = b \). Suppose \(S \subseteq I_0(R^n) \), \(\text{support} (S) \subseteq A \), \(\text{support} (T) \subseteq B \), and \(M_0(S) \geq 1 \). Suppose also \(Q \subseteq I_1(R^n) \) with \(\partial Q = S - T \). Then \(M_0(S) = M_0(T) \) and \(M(Q) \geq M_0(S) \cdot b \). Also, for \(L \) almost all \(r \in (0, b) \), \(\partial (Q \cap U_r(A)) = \partial Q \cap U_r(A) \in I_0(R^n) \) and

\[M_0(\partial (Q \cap U_r(A))) - \partial Q \cap U_r(A) \leq M_0(S). \]

Received by the editors January 7, 1963.
Proof. The lemma follows in part from [3, 3.8(3), 3.9, 3.10, 8.14] and the rest is obvious.

Proof of the theorem. By induction. For $k = 1$, the theorem is implied by the lemma. Assume the theorem holds up to dimension $k - 1$. Consider the map

$$G_r: I^{k-1} \rightarrow I_*(R^n)$$

$$G_r(\beta) = \partial[F([0, 1] \otimes \beta) \cap U_r(\text{support}[F(\alpha^k(1, 0))])]$$

$$- \partial[F([0, 1] \otimes \beta) \cap U_r(\text{support}[F(\alpha^k(1, 0))])]$$

for each cell $\beta \subseteq \partial^{k-1}$. By [3; 3.8(3), 3.9, 3.10, 8.14], G_r is defined for L_1 almost all $r \in (0, b_1)$. One verifies that for each such r, G_r is a chain map. Using the lemma, it follows that each such G_r satisfies the induction hypothesis. Thus

$$M(G_r(\alpha^{k-1})) \geq M_0(F(v)) \cdot \prod_{i=2}^{k} b_i.$$

Using [3, 3.10] one sees

$$M(F(\alpha^k)) \leq \int_0^{b_1} M(G_r(\alpha^{k-1}))dr \leq M_0(F(v)) \cdot \prod_{i=1}^{k} b_i.$$

Corollary. Let $f: I^k \rightarrow R^n$ be Lipschitzian with $|f(x) - f(y)| \leq b$ whenever x and y lie on opposite $k-1$ dimensional faces of I^k. The restrictions of f to the various faces of I^k determine integral currents in R^n, and since volume is always greater than or equal to mass, one has

$$\text{volume}(f) \geq M(f_*(I^k)) \leq b^k.$$

References

1. F. J. Almgren, Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962), 257–299.

Princeton University