1. Introduction. In this paper we examine one of the results in the theory of the proximity spaces of Efremovic [1]:

A set X with a binary relation “A close to B” (written $A \delta B$) is a proximity space if and only if there exists a compact Hausdorff space Y in which X can be topologically imbedded so that

\[(1.1) \quad A \delta B \text{ in } X \text{ if and only if } A \text{ meets } B \text{ in } Y \]

(\overline{A} denotes the closure of the set A) [2].

This proposition raises the question: Can we characterize the relations δ for which this result holds under weaker conditions on Y? In §4 we give an affirmative answer (Theorem 5.3) using rather mild restrictions on Y and on the imbedding of X in Y. This result is essentially a corollary to a fundamental theorem (Theorem 4.2).

2. Symmetric generalized proximity spaces. As in [3] we define a symmetric generalized proximity space (or P_δ-space) to be an abstract set X with a binary operation “$A \delta B$” (a P_δ-relation) on its power set satisfying the following axioms:

(P.1) $A \delta (B \cup C)$ implies that either $A \delta B$ or $A \delta C$.

(P.2) $A \delta B$ implies that A and B are nonvoid.

(P.3) If A meets B then $A \delta B$.

(P.4) $A \delta B$ and $b \delta C$ for all b in B implies that $A \delta C$.

(P.5) $A \delta B$ implies $B \delta A$.

We read the symbols “$A \delta B$” as “A is close to B”; and we say that “A is remote from B” (in symbols, “A not δB”) if A is not close to B.

(2.1) The following facts are evident: (1) If $A \delta B$, $A \subseteq C$, and $B \subseteq D$, then $C \delta D$. (2) Define

$$A^\delta = \{x \in X : x \delta A\};$$

then in a P_δ-space $(A^\delta) \delta (B^\delta)$ if and only if $A \delta B$.

(2.2) In [3] it is shown that there is a topology induced on every P_δ-space (X, δ) by the closure operation $A \rightarrow A^\delta$. Moreover, this topology is symmetric: x in \overline{y} implies y in \overline{x} for all points $x, y \in X$. Clearly, every T_1 topological space is symmetric.

(2.3) Theorem. Given any symmetric topological space X define δ_0 by:

Received by the editors October 13, 1962 and, in revised form, February 9, 1963.
A δ₀ B if and only if A meets B.

Then δ₀ is a Pᵦ-relation and is compatible with the given topology: x δ₀ B if and only if x ∈ B.

Proof. We derive axioms (P.1) through (P.5) by use of the Kuratowski closure axioms [4]. Axioms (P.1), (P.2), (P.3) and (P.5) are trivial results of the closure axioms and (2.4). For (P.4), note that if for a point b and a set C we have b ∩ C ≠ ∅, then there exists a point c in C such that c ∈ b. By symmetry then b ∈ c ⊆ C. Thus, if A ∩ B ≠ ∅ and b ∩ C ≠ ∅ for every b in B then B ⊆ C and so A ∩ C ≠ ∅. It is now clear, from the above argument, that δ₀ is compatible with the given topology.

(2.5) Theorem. Given a Pᵦ-space (X, δ) and δ₀ defined by (2.4) in terms of the topology induced by δ we have that A δ₀ B implies that A δ B for all subsets A and B of X. Thus δ₀ is the smallest P-relation compatible with the topology in a symmetric topological space.

Proof. The demonstration follows directly from (2.3), (2.1) and (P.3).

3. Clusters. A cluster π from a Pᵦ-space (X, δ) is a class of subsets of X satisfying:

(C.1) A δ B for all A, B ∈ π.

(C.2) A ∪ B ∈ π implies that either A ∈ π or B ∈ π.

(C.3) If B δ A for every A in π, then B ∈ π.

Note that this is the same definition used by Leader [5] in introducing clusters for Efremovic proximity spaces.

(3.1) Theorem. For x, a point in a Pᵦ-space (X, δ), the class πₓ of all subsets of X which are close to x is a cluster from X.

Proof. We must show that πₓ satisfies (C.1), (C.2) and (C.3). For (C.1) suppose A, B ∈ πₓ. Then x δ A and x δ B so that, by (2.5), A δ B. For (C.2) suppose A ∪ B ∈ πₓ. Then x δ (A ∪ B) and, by (P.1), this means that either x δ A or x δ B, that is, either A ∈ πₓ or B ∈ πₓ. For (C.3) suppose that A δ C for every C in πₓ. Since, by (P.3), {x} ∈ πₓ, we have in particular, that A δ x or, A ∈ πₓ.

(3.2) The following facts are easily established. (1) Any cluster π from a Pᵦ-space (X, δ) is closed under the operation of supersets: if π is a cluster from X, A ∈ π, and A ⊆ B, then B ∈ π. (2) If A ∈ π, a cluster from X, and a δ B for every a in A, then B ∈ π. (3) If π and π' are clusters from X and π is a subclass of π', then π = π'. (4) If a point x belongs to a cluster π, then π is just the class πₓ of all subsets A of X such that A δ x. (5) Given a cluster π from a nonvoid Pᵦ-space...
(X, δ) and any subset A of X, then either A ∈ π or X − A ∈ π. (6) Let π be a cluster from (X, δ). If A is a subset of X which meets every member of π, then A ∈ π.

4. Extensions characterized by clusters. We say that a subset X of a topological space Y is regularly dense in Y if and only if given U open in Y and p a point in U there exists a subset E of X with p ∈ E ⊆ U, the closure being taken in Y.

(4.1) Theorem. If X is regularly dense in Y, then X is dense in Y. If Y is regular and X is dense in Y then X is regularly dense in Y.

Proof. Y is open in Y, hence for any point p in Y there exists a subset E of X such that p ∈ E ⊆ X ⊆ Y. Since this is true for any p in Y, we have Y ⊆ X ⊆ Y.

For Y regular, y ∈ Y and U an open set of Y containing y we have the existence of an open set V of Y containing y such that V ⊆ U. Now E = V ∩ X is a subset of X and Ē = Cl(V ∩ X) = V ⊆ U, \(^1\) with the second equality following from the density of X in Y. Thus, y ∈ Ē ⊆ U.

(4.2) Theorem. Given a set X and some binary relation δ on the power set of X, the following are equivalent:

(I) There exists a T₁ topological space Y and a mapping f of X into Y such that fX is regularly dense in Y and

(4.3) A δ B in X if and only if Cl(fA) meets Cl(fB) in Y.

(II) δ is a P₃,relation satisfying the additional axiom,

(P.6) Given A δ B in X there exists a cluster π to which both A and B belong.

Proof. Suppose that (I) holds and define δ by (4.3). (P.1), (P.2), (P.3) and (P.5) are trivial consequences of the properties of closure. For (P.4) suppose that A δ B and b δ C for all b in B. Then Cl(fA) ∩ Cl(fB) ≠ ∅ and Cl(fb) ∩ Cl(fC) ≠ ∅ for all b in B, which since Y is T₁, implies that fb ∈ Cl(fC) for all b in B. Thus fB ⊆ Cl(fC) or Cl(fB) ⊆ Cl(fC) so that Cl(fA) ∩ Cl(fC) ≠ ∅ showing that A δ C. For (P.6), since Cl(fA) ∩ Cl(fB) ≠ ∅, let c ∈ Cl(fA) ∩ Cl(fB) and define π to be the class of all subsets S of X such that c ∈ Cl(fS). Clearly A and B are in π and in showing that π is a cluster the demonstrations of (C.1) and (C.2) are trivial. For (C.3) suppose that Cl(fD) ∩ Cl(fC) ≠ ∅ for every C in π but that D ∈ π, i.e., c ∈ Cl(fD). Thus, c ∈ Y − Cl(fD) and since FX is regularly dense in Y there exists a subset E of X such that c ∈ Cl(fE) ⊆ Y − Cl(fD). That is, there

\(^1\) Where Cl stands for closure.
exists an \(E \) in \(\pi \) such that \(\text{Cl}(fD) \cap \text{Cl}(fE) = \emptyset \). This contradicts the hypothesis of (C.3). Thus (II) is satisfied.

For the converse suppose that (II) holds. Given \(x \) in \(X \) the class \(\pi_x \)
of all subsets \(A \) of \(X \) such that \(x \notin A \) is a cluster from \(X \), by (3.1). Thus for any subset \(A \) of \(X \), let \(\alpha \) be the set of all clusters \(\pi_a \) determined by the points \(a \) in \(A \). Let \(\bar{\alpha} \) be the set of all clusters to which \(A \) belongs. By (P.3), \(A \in \pi_a \) for each \(a \) in \(A \) and so \(\alpha \subseteq \bar{\alpha} \). We will denote \(\bar{\alpha} \), the set of all clusters from \(X \), by \(Y \).

A subset \(A \) of \(X \) absorbs a subset \(\beta \) of \(Y \) if and only if \(A \) belongs to every cluster in \(\beta \), that is, if and only if \(\bar{\alpha} \) contains \(\beta \). For any subset \(\beta \) of \(Y \) we define the closure, \(\text{cl}(\beta) \), of \(\beta \) by

(4.4) \(\pi \in \text{cl}(\beta) \) if and only if every subset \(E \) of \(X \) which absorbs \(\beta \) is in \(\pi \).

We next show that

(4.5) \(\text{cl}(\alpha) = \bar{\alpha} \).

For if \(\pi \in \text{cl}(\alpha) \) then since \(A \) absorbs \(\alpha \), \(A \in \pi \) so that \(\pi \in \bar{\alpha} \). On the other hand, if \(\pi \in \bar{\alpha} \) then \(A \in \pi \). Now let \(P \) be in every \(\pi_a \) in \(\alpha \), i.e., \(P \notin a \) for every \(a \) in \(A \) and hence \(A \subseteq P^A \). Thus, by (3.2), (2), \(P \in \pi \) so that \(\pi \in \text{cl}(\alpha) \).

We now show that the Kuratowski closure axioms are satisfied by the closure defined by (4.4).

(K.1) \(\beta \subseteq \text{cl}(\beta) \): This is trivial since if \(E \) absorbs \(\beta \) then \(E \in \pi \) for every \(\pi \in \beta \).

(K.2) \(\text{cl}(\emptyset) = \emptyset \): Suppose \(\pi \in \text{cl}(\emptyset) \). Since it is vacuously true that every subset of \(X \) absorbs \(\emptyset \), we then have that every subset of \(X \) is in \(\pi \). In particular, \(\emptyset \) and \(X \) are in \(\pi \). Thus, \(\emptyset \subseteq X \), by (C.1), contradicting (P.2).

(K.3) \(\text{cl}(\text{cl}(\beta)) \subseteq \text{cl}(\beta) \): Suppose \(\pi \in \text{cl}(\text{cl}(\beta)) \) and that \(E \) absorbs \(\beta \). By (4.4), \(E \) absorbing \(\beta \) implies that \(E \) absorbs \(\text{cl}(\beta) \). Hence \(E \in \pi \) showing that \(\pi \in \text{cl}(\beta) \).

(K.4) \(\text{cl}(\beta \cup \beta') = \text{cl}(\beta) \cup \text{cl}(\beta') \): Suppose that \(\pi \in \text{cl}(\beta \cup \beta') \) and that \(A \) absorbs \(\beta \) and \(A' \) absorbs \(\beta' \). Then, by (3.2), (1), \(A \cup A' \) absorbs \(\beta \cup \beta' \) so that \(A \cup A' \in \pi \). But, by (C.2), this means that either \(A \in \pi \) or \(A' \in \pi \), that is \(\pi \subseteq \text{cl}(\beta) \) or \(\pi \subseteq \text{cl}(\beta') \). Thus \(\pi \subseteq \text{cl}(\beta) \cup \text{cl}(\beta') \) and we have \(\text{cl}(\beta \cup \beta') \subseteq \text{cl}(\beta) \cup \text{cl}(\beta') \). On the other hand, \(\pi \in \text{cl}(\beta) \cup \text{cl}(\beta') \) implies that either \(\pi \subseteq \text{cl}(\beta) \) or \(\pi \subseteq \text{cl}(\beta') \). Now if \(E \) absorbs \(\beta \cup \beta' \), then \(E \) absorbs \(\beta \) and also absorbs \(\beta' \). Hence, \(E \in \pi \) showing that \(\pi \subseteq \text{cl}(\beta \cup \beta') \) and (K.4) holds.

To show that the topology is \(T_1 \), suppose \(\pi' \in \text{cl}(\pi) \), where \(\pi \) and \(\pi' \) are clusters from \(X \). This means that every set in \(\pi \) is also in \(\pi' \).

Thus, \(\pi \subseteq \pi' \) and by (3.2), (3), \(\pi = \pi' \). Hence, \(\text{cl}(\pi) = \pi \) for every point \(\pi \) in the space \(Y \).
Now the correspondence which assigns to each point x in X the cluster π_x determined by it is a well-defined transformation mapping X into Y which we will denote by f. Note that $fA = \alpha$ for every subset A of X, so in order to show that (4.3) holds we must show that, using (4.5),

$$A \delta B \text{ in } X \text{ if and only if } \alpha \text{ meets } \beta \text{ in } Y.$$

So if $A \delta B$ there exists, by (P.6), a cluster π to which both A and B belong. Thus, by definition of α, we have $\pi \in \alpha \cap \beta$. On the other hand, if $\pi \in \alpha \cap \beta$ then A and B are in π so that, by (C.1), $A \delta B$.

To show that $fX = \mathfrak{X}$ is regularly dense in Y suppose that α is an open subset of Y and that $\pi \in \alpha$. We thus have $\pi \in Y - \alpha = \text{cl}(Y - \alpha)$. This means, by (4.4), that there exists some subset E of X such that E is in every cluster of $Y - \alpha$ but that E is not in π. Hence, by (C.3), there is a C in π such that $E \not\subset C$.

Since \mathfrak{C} is the set of all clusters to which C belongs we have $\pi \in \mathfrak{C}$. And since E belongs to every cluster in $Y - \alpha$ and $E \not\subset C$, then C cannot belong to any cluster in $Y - \alpha$, by (C.1). Hence \mathfrak{C} is contained in α and we have shown that \mathfrak{X} is regularly dense in Y.

The proof is now complete.

5. **Symmetric P_1-spaces.** A P_1-space (X, δ) in which δ satisfies the additional axiom

$$x \delta y \text{ implies } x = y \text{ for all points } x, y \in X$$

is called a *symmetric P_1-space* (see [3]). The following theorem follows directly from (C.1) and (5.1).

(5.2) **Theorem.** Every cluster π from a symmetric P_1-space (X, δ) possesses at most one point.

(5.3) **Theorem.** Given a set X and some binary relation δ on the power set of X, the following are equivalent:

(i') There exists a T_1 topological space Y in which X can be topologically imbedded as a regularly dense subset so that (1.1) holds.

(ii') δ is a symmetric P_1-relation satisfying (P.6).

Proof. The demonstration is similar to that of Theorem (4.2). To see that (5.1) holds, note that $\mathfrak{x} \cap \mathfrak{y} \not= \emptyset$ implies that $x \cap y \not= \emptyset$, or $x = y$.

To show that our imbedding is topological we note first that, because of (5.2) the correspondence between X and \mathfrak{X} induced by the identification of x with the cluster π_x determined by it is one-to-one. To see that the mapping is bicontinuous we must show that if A is a
subset of X, $x \in A^\delta$ if and only if $\pi_x \in \text{kl}(\alpha)$, where $\text{kl}(\alpha)$ is the closure of α in \mathfrak{K} relative to the space Y.

So suppose $x \in A^\delta$ and that P absorbs α. Then P is a member of every π_a in α and it follows that $a \in P$ for every a in A. Thus, $A \subseteq P^\delta$ and since $A \subseteq \pi_x$ we have, from (3.2), (2), that $P \subseteq \pi_x$. Thus, $\pi_x \subseteq \text{kl}(\alpha)$.

On the other hand, suppose $\pi_x \subseteq \text{kl}(\alpha)$. Then since A absorbs α we have $A \subseteq \pi_x$, i.e., $A \in x$ and hence $x \in A^\delta$. This completes the proof.

References

Laboratory for Electronics, Inc., Monterey, California