EXTREME HAMILTONIAN CIRCUITS. RESOLUTION OF THE CONVEX-ODD CASE

FRED SUPNICK AND LOUIS V. QUINTAS

Let \(n \) points in the Euclidean plane fall on the boundary \(B \) of their convex hull. It is well known that a shortest polygon passing through these points coincides with \(B \). But, it is not known how to explicitly indicate a longest polygon having these \(n \) points as vertices. In this paper we do this for the case where \(n \) is odd.\(^1\)

Theorem. Let

\[
(1) \quad P_1, P_3, P_5, \ldots, P_{2p-1}, P_2, P_4, \ldots, P_{2p-2}
\]

be points in the plane which fall on the boundary \(B \) of their convex hull in the stated (linear or cyclic) order (accordingly as the points (1) are or are not collinear). Then \([P_1P_3 \cdots P_{2p-1}]\)\(^2\) is a longest polygon with (1) as vertices; if no three points of (1) are collinear, it is the only one.

Proof. Case I. Suppose no three points of (1) are collinear. An edge of a polygon intersected by all noncontiguous edges must have the vertices of the polygon alternatively on either side, and is thus an edge of \([P_1P_3 \cdots P_{2p-1}]\). This implies that \([P_1P_2 \cdots P_{2p-1}]\) is the only polygon with each closed edge intersecting every other closed edge.

The symbol \([V_1 \cdots V_{i-1}(V_i \cdots V_j)V_{j+1} \cdots V_n]\) will denote the polygon \([V_1 \cdots V_{i-1}V_jV_{j-1} \cdots V_iV_{j+1} \cdots V_n]\); the operation \([\cdots (\cdots) \cdots]\) will be referred to as an **arcinversion** (cf. [1, p. 180]). Let \(h=[R_1 \cdots R_{2p-1}]\) denote any polygon having (1) as vertices and which is distinct from \([P_1 \cdots P_{2p-1}]\). We show that there is an arcinversion which yields a longer polygon. Let \(i\) denote the smallest integer such that the closed edge \(R_iR_{i+1}\) of \(h\) does not intersect at least one of the closed edges \(R_iR_2, R_2R_3, \ldots, R_{i-1}R_i\) of \(h\); \(i\) of course satisfies \(2 < i < 2p - 1\). Then, the vertices \(R_{i-1}\) and \(R_i\) define the following partition of \(B\): \(B_1 \cup B_2 \cup \{R_{i-1}, R_i\}\), where \(B_1\) is the component of \(B - \{R_{i-1}, R_i\}\) which contains \(R_i\).

Case A. \(R_i-2\) and \(R_{i+1}\) in the same component of \(B - \{R_{i-1}, R_i\}\).

Presented to the Society, February 23, 1963; received by the editors February 11, 1963.

\(^1\) *Added in proof.* The remaining case, where \(n\) is even, has recently been resolved by the authors (Abstract 611-60, Notices Amer. Math. Soc. 11 (1964), 335).

\(^2\) The symbols for polygons are to be considered cyclic and symmetric.
(i) Suppose \(i \) is odd. Then \(R_{i+1} \) is in \(\mathcal{C}_2 \) and the closed edge \(R_i R_{i+1} \) does not intersect the closed edge \(R_i R_2 \). For, if \(R_i R_{i+1} \cap R_i R_2 \neq \emptyset \) (\(\emptyset \) denotes the empty set), then the closed edge \(R_i R_{i+1} \) would intersect each of the closed edges \(R_2 R_3, R_3 R_4, \ldots, R_{i-1} R_i \). The arcinversion \([R_1(R_2 \cdots R_i)R_{i+1} \cdots R_{2p-1}] \) yields a polygon which is longer than \(h \).

(ii) Suppose \(i \) is even. Then \(R_{i+1} \) is in \(\mathcal{C}_2 \) and the closed edge \(R_i R_{i+1} \) does not intersect the closed edge \(R_2 R_3 \). Thus, the arcinversion \([R_1 R_2(R_3 \cdots R_i)R_{i+1} \cdots R_{2p-1}] \) yields a polygon which is longer than \(h \).

Case B. \(R_{i-2} \) and \(R_{i+1} \) in different components of \(B - \{R_{i-1}, R_i\} \). Let \(\mathcal{C}_1 \) denote the component \(B_1 \) or \(B_2 \) which contains at most \(p - 2 \) vertices, and \(\mathcal{C}_3 \) the component which has at least \(p - 1 \) vertices. Let the vertices of \(h \) be renumbered consecutively as follows: \(h = [S_1 S_2 \cdots S_{2p-1}] \) with \(R_{i-1} R_i = S_i S_2 \) or \(S_2 S_1 \) so that \(S_3 \) is in \(\mathcal{C}_1 \).

Let \(k \) denote the number of vertices in \(\mathcal{C}_1 \). We first show that there is at least one edge of \(h \) which has both vertices in \(\mathcal{C}_2 \). There are at most \(2k \) edges incident to the vertices in \(B \setminus \{S_1, S_2\} \) which terminate at vertices in \(\mathcal{C}_2 \). There are \((2p-1)-(k+2)\) vertices in \(\mathcal{C}_2 \). Thus, there are at least the following number of edges of \(h \) which have both vertices in \(\mathcal{C}_2 \)

\[
N = \frac{2((2p - 1) - (k + 2)) - 2k}{2} = 2p - 2k - 3.
\]

Since \(k \leq p - 2 \), we have \(N \geq 2p - 2(p - 2) - 3 = 1 \).

Let \(S_i S_{i+1} \) denote an edge of \(h \) which has both vertices in \(\mathcal{C}_2 \). Then, either \(S_i S_i \cap S_{i+1} \neq \emptyset \) or \(S_i S_{i+1} \neq \emptyset \). In the former case the arcinversion \([S_1(S_2 \cdots S_i)S_{i+1} \cdots S_{2p-1}] \) yields a polygon which is longer than \(h \), and in the latter case the arcinversion

\[
[S_1 S_2(S_3 \cdots S_i)S_{i+1} \cdots S_{2p+1}]
\]

yields a polygon which is longer than \(h \).

Remark. We note that points (1) satisfying Case I have the property that the longest (also, shortest) polygon can be obtained from any other polygon by a sequence of arcinversions each of which strictly increases (decreases) the length of the polygon to which it is applied (cf. [1, Remark III, p. 181]).

Case II. Suppose \(B \) has support lines passing through at least three points of (1). If the points of (1) are not all collinear, let \(P \) be a point in the interior of the convex hull of (1) and \(B(t) \) (0 \(\leq t < 1 \)) a family of strongly convex curves circumscribing \(B \) and converging to \(B \) as \(t \) approaches 1. If the points of (1) are all collinear, let \(P \) be a point in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
one of the open half-planes defined by the line on which the points (1) lie and \(B(t) \) \((0 \leq t < 1)\) a family of strongly convex arcs having \(P_1 \) and \(P_{2p-2} \) as endpoints, converging to \(B \) as \(t \) approaches 1, and lying in the closed half-plane which does not contain \(P \). Let \(P_i(t) \) be the intersection of \(B(t) \) with the ray emanating from \(P \) and passing through \(P_i \) \((1 \leq i \leq 2p-1)\). Then, for each \(t \) \((0 \leq t < 1)\), Case I implies \([P_1(t) \cdots P_{2p-1}(t)]\) is longer than any other polygon \([P_{i_1}(t) \cdots P_{i_{2p-1}}(t)]\). Thus, \([P_1 \cdots P_{2p-1}]\) is a polygon of maximum length.

Remark. We note that in Case II \([P_1 \cdots P_{2p-1}]\) is not necessarily the only longest polygon. For example, in a set (1) for which \(P_1, P_2, P_3, \cdots, P_{2p-1}, P_2, P_4 \) are collinear the polygons \([P_1 \cdots P_{2p-1}]\) and \([P_1(P_2P_3P_4)P_5 \cdots P_{2p-1}]\) have the same length.

Reference

City College, New York and

St. John’s University, Jamaica, New York