A THEOREM ON MAXIMUM MODULUS

ANATOLE BECK

Introduction. If D is a domain in the plane of complex numbers, then every analytic function achieves its maximum modulus only at the boundary. We phrase this by asserting that if f is analytic in D, and f is not constant, and if $x \in \partial D$ has the property that
\[
\lim \sup_{z \to x} |f(z)| = \sup_{D} |f(z)|,
\]
then $x \in \partial(D)$, the boundary of D. If x is the only point for which the above identity holds, then x is the peak point for f in D. If x is the peak point for a bounded analytic function in D, then x is a peak point of D. We are interested in knowing which boundary points of D can be peak points.

W. Rudin [1] defines a boundary point x of a domain D as a removable boundary point if every function bounded and analytic in D can be continued at x. All boundary points which are not removable are essential.

We shall show that a point is a peak point of D if and only if it is an essential boundary point.

Lemma 1. If D is a simply connected domain and $x \in \partial(D)$ is linearly accessible from the interior, then there is a schlicht mapping f of D into the open unit disc such that $\lim_{z \to x} f(z) = 1$ and $\lim \sup_{z \to x} |f(z)| < 1$ if $\xi \in \partial(D)$, $\xi \neq x$.

Proof. Let $(x, x+\alpha]$ be a line segment contained in D. Then the function
\[
f(z) = g^{-1}(2 + 4(\alpha^{-1}(z-x))^2),
\]
where $g(z) = z + 1/z$, $|z| < 1$, is a schlicht function with the properties:
1. $\lim_{z \to x} f(z) = 1$,
2. $|x-y| > \epsilon$, $y \in D \Rightarrow 1 - |f(y)| > \eta = \eta(\epsilon, D) > 0$,
as we shall show. Let $x_i \to x$, $x_i \in D$ and $|y-x| > \epsilon$. If we examine the mapping $z \to f_1(z) = \alpha^{-1}(z-x)$, it is a linear mapping taking $[x, x+\alpha]$ onto $[0, 1]$. $\alpha^{-1}(x_i-x) \to 0$, $|f_1(y) - 0| > \epsilon/|\alpha|$. Since D, and thus $f_1(D)$, is simply connected, we can apply a square root, with $(+1)^{1/2} = +1$, and get $f_2(z) = (f_1(z))^{1/2}$, $(\alpha^{-1}(x_i-x))^{1/2} \to 0$, and

Received by the editors February 13, 1963.

1 This research was supported by the University of Wisconsin under contract No. AF 49(638)-868 with the Air Force Office of Scientific Research.
We note that each point of \((0, 1]\) is an interior point of \(f_2(D)\), so that each point of \([-1, 0)\) is an exterior point of \(f_2(D)\). Thus, \(\overline{f_2(D)}\) meets \([-1, 0)\) only at 0. Set \(\eta_1 = \eta_1(\epsilon, D) = d([-1, 0], f_2(D) - N(0, \epsilon_1)) > 0\). Then \(d(f_2(y), [-1, 0]) \geq \eta_1\). Setting \(f_3(z) = 2 + 4(f_2(z))\), we have \(f_3(x_i) \to 2\) and \(d(f_3(y), [-2, 2]) \geq 4\eta_1\). We now observe that for our function \(g\), \(g(z) \to 2\) iff \(z \to 1\) and \(|z| \leq 1 - \epsilon \Rightarrow d(g(z), [-2, 2]) > \epsilon^2\). Thus \(f(y) = g^{-1}(f_3(x_i)) = g^{-1}(2 + 4(\alpha^{-1}(x_i - z))^{1/2}) \to 1\) and \(|f(y)| = |g^{-1}(f_3(y))| < 1 - (4\eta_1)^{1/2}\) so that \(1 - |f(y)| > (4\eta_1)^{1/2} = \eta(\epsilon, D) > 0\), as promised.

Lemma 2. The set of peak points of any domain is closed.

Proof. Let \(a_i\) be the peak point of \(f_i\) in \(D\), \(i = 1, 2, \ldots\), and let \(a_i \to a\). We assume that \(\sup_{z \in D} |f_i| = 1\). Let \(N_i\) be a neighborhood of \(a_i\), \(i = 1, 2, \ldots\), with \(\text{diam}(N_i) \to 0\) and pairwise disjoint. Since \(a_i\) is a peak point of \(f_i\), \(f_i\) is bounded away from 1 off \(N_i\), so that for an appropriate integer \(m_i\), we have

\[
\sup_{z \in D - N_i} |f_i^{m_i}(z)| < 4^{-i}.
\]

Set \(g_i(z) = f_i^{m_i}(z)\). We will now generate (inductively) a sequence \(\{b_i\}\) such that

1. \(\left| b_i \right| \leq 2\),
2. \(\sum_{i=1}^{n} b_i g_i\) is bounded and analytic in \(D\),
3. \(\sup_{z \in N_i} |\sum_{i=1}^{n} b_i g_i| = 2 - 1/n\).

We take \(b_1 = 1\). Given \(b_1, \ldots, b_{n-1}\), we find \(b_n\) as follows:

Set \(h_n(\xi) = \sup_{z \in N_n} |b_1 g_1 + \cdots + b_{n-1} g_{n-1} + \xi : g_n|, |\xi| \leq 2\). Then \(h_n(0) = \sup_{z \in N_n} |b_1 g_1 + \cdots + b_{n-1} g_{n-1}| < \sum_{i=1}^{n-1} 2 \cdot 4^{-i} < 2/3\). We now choose a point \(y_n\) such that \(g_n(y_n) > 1 - (1/2n)\), and set

\[
c_n = 2 \frac{b_1 g_1(y_n) + \cdots + b_{n-1} g_{n-1}(y_n)}{g_n(y_n)} \frac{g_n(y_n)}{b_1 g_1(y_n) + \cdots + b_{n-1} g_{n-1}(y_n)}.
\]

Then

\[
h_n(c_n) \geq \left| b_1 g_1(y_n) + \cdots + b_{n-1} g_{n-1}(y_n) + c_n g_n(y_n) \right| \geq \left| c_n g_n(y_n) \right| > 2 - \frac{1}{n},
\]

This is because the image under \(g^{-1}\) of the circle \(x^2 + y^2 = \epsilon^2\) is the ellipse \((u^2/a^2) + (v^2/b^2) = 1\), where \(a = c + 1/c, b = c - 1/c\). If \(\epsilon = 1 - \epsilon\) then the image of \(x^2 + y^2 < (1 - \epsilon)^2\) is the exterior of the indicated ellipse. The closest approach of this set to the line \([-2, 2]\) is at the vertex, where the distance is \(\epsilon^2/(1 - \epsilon)\).
since \(\sum_{i=1}^{n-1} b_i g_i(z) \) and \(c_n g_n(y_n) \) have the same argument. Since
\(h_n(0) < 2/3 < 2 - 1/n < h_n(c_n) \), there is a point \(b_n \) in the disc \(|z| \leq 2 \) such that \(h_n(b_n) = 2 - 1/n \). For \(z \in N_n \), we then have
\[
\left| \sum_{i=1}^{n-1} b_i g_i(z) \right| \leq \left| \sum_{i=1}^{n} b_i g_i(z) \right| + \sum_{i=n+1}^{\infty} |b_i| \cdot g_i(z) < 2 - \frac{1}{n} + \sum_{i=n+1}^{\infty} 2 \cdot 4^{-i} = 2 - \frac{1}{n} + \frac{2}{3 \cdot 4^n}.
\]
Similarly,
\[
\sup_{z \in N_n} \left| \sum_{i=1}^{n} b_i g_i(z) \right| > 2 - \frac{1}{n} - \frac{2}{3 \cdot 4^n}.
\]
For \(z \in D - \bigcup_{i=1}^\infty N_i \), we have
\[
\left| \sum_{i=1}^{\infty} b_i g_i(z) \right| < \sum_{i=1}^{\infty} 2 \cdot 4^{-i} = 2/3.
\]
Thus \(\left| \sum_{i=1}^{\infty} b_i g_i(z) \right| < 2 \) for all \(z \in D \). If \(K \) is a compact subset of \(D \), then \(K \) meets only finitely many \(N_i \), so that the series converges uniformly and absolutely on \(K \). Thus \(f(z) = \sum_{i=1}^{\infty} b_i g_i(z) \) is analytic. Finally, it is clear that \(|f(z)| \) is close to 2 only inside \(N_i \), for large \(i \), that is, only around \(a \).

Lemma 3. If \(D \) is any domain, the boundary points linearly accessible from the interior are dense in \(\delta(D) \).

Proof. Let \(x \in \delta(D), \ eps > 0 \). Let \(y \in D, |y - x| < \eps \). Let \(x_1 \) be the point of \(\delta(D) \cap [x, y] \) lying nearest to \(y \). Then \(|x - x_1| < \eps \) and \(x_1 \) is linearly accessible.

Theorem 1. If \(D \) is simply connected, and its boundary consists of more than one point, then every boundary point is a peak point.

Proof. Direct consequence of Lemmas 1, 2, 3.

Lemma 4. If \(x \in \delta(D) \) and the component of \(x \) in\(D', K(x) \neq \{x\}, \) then \(x \) is a peak point of \(D \).

Proof. Let \(y \in K(x), y \neq x \). Let \(K_1 \) be a sub-continuum of \(K(x) \), containing \(y \) but not containing \(x \). There is a conformal mapping \(\phi \) of \(K_1' \) onto the open unit disc, and \(\phi \) is a homeomorphism around \(x \). Then \(\phi(K(x))' \) is a simply connected domain, and each linearly accessible point of \(\delta(\phi(K(x))') \) is a peak point of the kind described in Lemma 1. If we now restrict our functions to \(\phi(D) \), each of these points is still a peak point, though the point may no longer be linearly accessible. Now, by Lemma 2, \(x \) is a peak point.
Lemma 5. If $K(D)$ denotes the closure of the union of those components of $\delta(D)$ which are not single points, then every point in $K(D)$ is a peak point of D.

Proof. Clear from Lemmas 4 and 2.

Definition. A set S is a Painlevé null set (called a p-null set) if the algebra of bounded analytic functions on S' consists of the constants alone.

Definition. A point $x \in \delta(D)$ is called a p-essential boundary point if for each $\epsilon > 0$, $N(x, \epsilon) \cap \delta(D)$ is not a p-null set.

Lemma 6. Let $x \in \delta(D)$ and $x \in K(D)$. Then if x is a p-essential boundary point, x is a peak point of D.

Proof. Let N be a neighborhood of x in which $\delta(D)$ is totally disconnected. Since the p-essential boundary points form a perfect set, let $x_i \to x$ be a sequence of p-essential boundary points. Let N_i be a sequence of neighborhoods with $N_i \subset N$, $x_i \in N_i$ no two N_i intersecting, and $\text{diam}(N_i) \to 0$. Let M_i be open with $x_i \in M_i \subset \overline{M_i} \subset N_i$ for each i. Then $K_i = M_i \cap \delta(D)$ is not a p-null set and thus we can find f_i such that f_i is analytic on K_i (including ∞) and f_i is not constant. We can assume that $\sup_{x \in K_i} |f_i| = 1$. Then $\sup_{x \in K_i} |f_i| < 1$, so we can choose a sequence of integers m_i so that

$$\sup_{N_i} |f_i^{m_i}| < 4^{-i}.$$

Set $g_i(z) = f_i^{m_i}(z)$. Since D' is nowhere dense in N_i, $\sup_{D'} |g_i| = 1$, and $\sup_{D-N_i} |g_i| < 4^{-i}$.

Using the same technique as in Lemma 2, we choose b_n so that

1. $|b_n| \leq 2$,
2. $\sup_{N_i} \left| \sum_{i=1}^n b_i g_i \right| = 2 - 1/n$,
3. $f(z) = \sum_{i=1}^n b_i g_i(z)$ is bounded and analytic in D.

Furthermore, we deduce that

$$2 - \frac{1}{n} - \frac{2}{3} \cdot 4^{-n} < \sup_{N_n} |f| < 2 - \frac{1}{n} + \frac{2}{3} \cdot 4^{-n},$$

and $\sup_{D-U_i N_i} |f| < 2/3$. Thus, f has a peak at x.

Theorem 2. If x is a p-essential boundary point, then x is a peak point.

Proof. If $x \in K(D)$, this is true by Lemma 5; otherwise by Lemma 6.

Theorem 3. x is a peak point iff x is an essential boundary point.
Proof. By a theorem of W. Rudin [1], x is an essential boundary point iff x is a p-essential boundary point. From the remarks above, every $x \in K(D)$ is a peak point of a function which has no limit at x. Thus, no point of $K(D)$ is removable. If $x \in \delta(D) - K(D)$ and x is removable, then each f is continuably there. Since $\delta(D)$ is nowhere dense around x, this extension does not change the maximum modulus nor the lim sup at x. By the maximum modulus theorem, $f(x)$ is not the maximum. By continuity, x is not a peak for any f.

It would be interesting to know when x is the peak point of a bounded analytic function f which has a limit at x, or whose modulus has a limit at x. It is clear from previous remarks that every essential boundary point is the peak point of a function which does not have these limits. This question is open.

Reference