A bifurcation theorem

Author:
Paul Waltman

Journal:
Proc. Amer. Math. Soc. **15** (1964), 627-631

MSC:
Primary 34.41

DOI:
https://doi.org/10.1090/S0002-9939-1964-0164085-0

MathSciNet review:
0164085

Full-text PDF

References | Similar Articles | Additional Information

**[1]**N. Minorsky,*Introduction to non-linear mechanics*, J. E. Edwards, Ann Arbor, Mich., 1947. MR**0020689 (8:583d)****[2]**A. Andronov and C. E. Chaikin,*Theory of oscillations*, Princeton Univ. Press., Princeton, N. J., 1949. MR**0029027 (10:535f)****[3]**K. O. Friedrichs,*Advanced ordinary differential equations*, New York University Lecture Notes, 1949.**[4]**E. A. Coddington and N. Levenson,*Theory of ordinary differential equations*, McGraw-Hill, New York, 1955. MR**0069338 (16:1022b)****[5]**L. Markus,*Global structure of ordinary differential equations in the plane*, Trans. Amer. Math. Soc.**76**(1954), 127-148. MR**0060657 (15:704a)****[6]**V. V. Nemickii and V. V. Stepanov,*Qualitative theory of differential equations*, Princeton Univ. Press, Princeton, N. J., 1960. MR**0121520 (22:12258)****[7]**W. S. Cunningham,*Simultaneous nonlinear differential equations of growth*, Bull. Math. Biophys.**17**(1955), 101-110. MR**0069364 (16:1026h)****[8]**W. R. Utz and P. Waltman,*Periodicity and boundedness of solutions of generalized differential equations of growth*, Bull. Math. Biophys.**25**(1963), 75-93.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34.41

Retrieve articles in all journals with MSC: 34.41

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1964-0164085-0

Article copyright:
© Copyright 1964
American Mathematical Society