-FRAMES IN EUCLIDEAN \(k \)-SPACE

J. C. CANTRELL

1. Introduction. An \(n \)-frame \(F_n \) is a union of \(n \) arcs, \(F_n = \bigcup_{i=1}^{n} A_i \), with a distinguished point \(p \) such that, if \(n = 1 \), \(p \) is an end point of \(A_1 \), and if \(n > 1 \), \(p \) is an end point of each \(A_i \) and \(A_i \cap A_j = p, \ i \neq j \).

We introduce the distinguished point in order to differentiate between a 1-frame and a 2-frame. A 1-frame is an arc with an end point distinguished and a 2-frame is an arc with an interior point distinguished. This difference will keep certain logical difficulties from arising in the inductive proof of Theorem 1.

In \(E_k \) let \(B_i \) be the arc in the \(x_1, x_2 \) plane, defined in polar coordinates by \(r \leq 1, \ \theta = \pi(1 - 1/i) \). For \(n \) a positive integer, the standard \(n \)-frame \(G_n \) is defined by \(G_n = \bigcup_{i=1}^{n} B_i \). An \(n \)-frame \(F_n \) in \(E_k \) is said to be tame if there is a homeomorphism of \(E_k \) onto itself which carries \(F_n \) onto \(G_n \). Otherwise \(F_n \) is said to be wild. For \(n > 1 \), \(F_n \) is said to be mildly wild if it is wild and \(F_n - (A_i - p) \) is tame for \(i = 1, 2, \ldots, n \).

In [3] it was shown that for each \(n > 1 \) there are mildly wild \(n \)-frames in \(E^2 \). Since there are wild arcs in \(E_k \) for each \(k > 3 \) [1], there will be wild \(n \)-frames for these dimensions. However, we will show that there are no mildly wild \(n \)-frames in \(E_k \) for \(k > 3 \). It then follows that, for \(k > 3 \), the union of two tame arcs meeting only in a common end point is a tame arc. With a small amount of additional argument we will show that a wild arc (simple closed curve) in \(E_k, k > 3 \), must fail to be locally flat at each point of some Cantor set. (If \(S \) is an arc (simple closed curve) in \(E_k \), we say that \(S \) is locally flat at \(p \in S \) if there is a neighborhood \(U \) of \(p \) and a homeomorphism \(h \) which carries \(U \) onto \(E_k \) with \(h(U \cap S) \) lying in the \(x_1 \)-axis.)

Through the remainder of this paper we will assume that we are working in an euclidean space \(E_k \) with \(k > 3 \). We recall that for an arc or simple closed curve in \(E_k \) to be tame it is sufficient that it be locally flat at each of its points. This result for simple closed curves is proved in [5]. The same technique of proof may be used to establish the corresponding result for arcs.

2. Basic lemmas. In [4] it was stated that the result contained in Lemma 2 below followed as a corollary to a theorem concerning manifolds with boundary \(E^{k-1} \) and interior \(E^k \). Since it seems that a more

Presented to the Society, August 29, 1963; received by the editors April 22, 1963.

574
direct proof should be available to the reader, an alternate proof is included in this paper.

Lemma 1. Let \(L \) be an arc in \(E^k \), \(p \) an end point of \(L \), and \(U \) a neighborhood of \(L - p \). If \(L \) is locally flat at each point of \(L - p \), then there is a homeomorphism \(f \) of \(E^k \) onto itself such that \(f \) is the identity outside \(U \) and \(f(L) \) is locally polyhedral at each point of \(f(L - p) \).

Proof. Let \(p_0 \) be the end point of \(L \), different from \(p \), and let \(p_1, p_2, \ldots \) be a sequence of points of \(L \) converging to \(p \) with \(p_0 < p_1 < p_2 < \cdots \) relative to the order of \(L \) from \(p_0 \) to \(p \). For each integer \(i \) let \(\epsilon_i = 1/i \) and let \(A_i \) be the closed subarc of \(L \) from \(p_0 \) to \(p_i \). Since \(A_2 \) is tame, we may select a closed \(k \)-cell neighborhood \(U \) of \(A_1 \) with the properties: (1) \(U \) is contained in the \(\epsilon_i \)-neighborhood of \(A_1 \) and in \(U \), (2) \(U \cap (L - A_2) = \emptyset \), and (3) \(U \) may be assigned a combinatorial triangulation in which \(A_1 \) is polyhedral. We then apply Homma’s Theorem [5] to obtain a homeomorphism \(f_1 \) of \(E^k \) onto itself such that \(f_1 \) is the identity outside \(U \) and \(f_1(A_1) \) is polyhedral in \(E^k \).

Assume that for each integer \(i > 1 \) certain homeomorphisms \(f_{i-1}, \ldots, f_1 \) of \(E^k \) onto itself have been constructed so that \(f_{i-1} \cdots f_2 \) is polyhedral in \(E^k \). If \(i = 2 \), let \(U_2 \) be a closed \(k \)-cell neighborhood of \(\text{Cl}(f_1(A_2 - A_1)) \) with the properties: (1) \(U_2 \) is contained in the \(\epsilon \)-neighborhood of \(f_1(A_2 - A_1) \) and in \(U \), (2) \(U_2 \cap f_1(L - A_2) = \emptyset \), and (3) \(U_2 \) may be assigned a combinatorial triangulation in which \(U_2 \cap f_1(A_2) \) appears as a polyhedron. We then apply Theorem 2.1 of [5] to obtain a homeomorphism \(f_2 \) of \(E^k \) onto itself such that \(f_2 \) is the identity outside \(U_2 \) and on \(f_1(A_1) \), and \(f_2 \cap f_1 \cap f_2(A_2 - A_1) \) is polyhedral in \(E^k \). Note that at this point \(f_2 f_1(A_2) \) is polyhedral in \(E^k \). If \(i > 2 \), since \(A_{i+1} \) is tame, we may select a closed \(k \)-cell neighborhood \(U_i \) of \(\text{Cl}(f_{i-1} \cdots f_2 f_1(A_1 - A_{i-1})) \) with the properties:

1. \(U_i \) is contained in the \(\epsilon_i \)-neighborhood of \(f_{i-1} \cdots f_2 f_1(A_1 - A_{i-1}) \) and in \(U \),
2. \(U_i \cap [f_{i-1} \cdots f_2 f_1(L - A_{i+1})] = \emptyset \),
3. \(U_i \cap [U_{i-1} - f_i(A_i)] = \emptyset \),
4. \(U_i \cap [U_{i-2} f_{i-1} \cdots f_2 f_1(U_{i+1})] = \emptyset \), and
5. \(U_i \) may be assigned a combinatorial triangulation in which \(U_i \cap f_{i-1} \cdots f_2 f_1(A_2) \) is polyhedral. Again Theorem 2.1 of [5] is applied to obtain a homeomorphism \(f_i \) of \(E^k \) onto itself such that \(f_i \) is the identity outside \(U_i \) and on \(f_{i-1} \cdots f_2 f_1(A_{i-1}) \), and

\[
f_i[\text{Cl}(f_{i-1} \cdots f_2 f_1(A_1 - A_{i-1}))]
\]

is polyhedral in \(E^k \).
For each $x \in E^k$ we set $f(x) = \lim_{i \to +\infty} f_i \cdots f_2 f_1(x)$. Depending principally on the fact that if $x \in \bigcup_{j=1}^n U_j$, $f(x) = x$, and if $x \in U_j$, $f(x) = f_{j+1} f_j f_{j-1}(x)$ one establishes that f is a homeomorphism of E^k onto itself, and $f(L)$ is locally polyhedral at each point different from $f(p)$.

Lemma 2. If L is as in Lemma 1, then L is tame.

Proof. Let f be a homeomorphism of E^k onto itself so that $f(L)$ is locally polyhedral at each point of $f(L) - f(p)$. We use Lemma 2 of [2] to obtain a homeomorphism g of E^k onto itself such that $gf(L)$ is polyhedral. We then use Theorem 5 of [6] to obtain a homeomorphism h of E^k onto itself that carries $gf(L)$ onto B_1.

For each positive integer n we may establish the following theorem.

Theorem 1. Let $F_n = \bigcup_{i=1}^n A_i$ be an n-frame, with distinguished point p, such that A_i, $i = 1, 2, \ldots, n$, is locally flat at each point of $A_i - p$. Then F_n is tame.

Proof. Theorem 1 has been proved in Lemma 2. We next assume that Theorem 1, $n > 1$, is true and proceed to show that Theorem 1, $n = 1$, is true.

Let $F_n = \bigcup_{i=1}^n A_i$ be an n-frame which satisfies the hypotheses of Theorem 1. There is a homeomorphism ϕ_1 of E^k onto itself such that $F_{n-1} = F_n - (A_n - p)$ is carried onto G_{n-1}. Since $\phi_1(A_n)$ is tame, there is a neighborhood V of $\phi_1(A_n - p)$ which does not intersect G_{n-1}, and, by Lemma 1, a homeomorphism ϕ_2 on E^k such that $\phi_2 \phi_1(A_n)$ is locally polyhedral at each point of $\phi_2 \phi_1(A_n - p)$ and ϕ_2 is fixed outside V. We next construct a homeomorphism ϕ_3 on E^k such that $\phi_3 \phi_2 \phi_1(A_n) = B_n$ and ϕ_3 is fixed on G_{n-1}. The homeomorphism $\phi_3 \phi_2 \phi_1$ will then carry F_n onto G_n and the proof of Theorem 1 will be complete. Since the construction of ϕ_3 is almost identical with that used in the proof of Lemma 2 of [2], we will only give an outline of the construction.

We use the local connectivity of $\phi_2 \phi_1(A_n)$ to find a sequence $\{V_m\}_{m=1}^\infty$ of closed cubical neighborhoods of the origin such that (1) the end points of B_n and $\phi_2 \phi_1(A_n)$, different from the origin, are outside V_1, (2) the diameters of the V_m converge to zero, and (3) if L is any subarc of $\phi_2 \phi_1(A_n)$ whose end points lie in V_m, then L is contained in $\text{Int} V_m$.

We will further assume that $\phi_2 \phi_1(A_n) \cap \text{Bd} V_{2m}$ is a finite set of points and that no pair of components of $\phi_2 \phi_1(A_n) - V_{2m}$ share a common end point.

For each positive integer m let $u_{m1}, \ldots, u_{m(k(m))}$ be the components of $\phi_2 \phi_1(A_n) - \text{Int} V_{2m}$ which have both end points on $\text{Bd} V_{2m}$. Since there can be no knotting or linking of polyhedral simple closed curves.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
in an euclidean space of dimension greater than three, each of the u_m may be moved into $\text{Int } V_{2m}$ without moving points outside $V_{2m-1} - V_{2m+1}$ or on G_{n-1}. Thus we may construct a semilinear homeomorphism f_m such that $f_m\phi(A_n) \cap \text{Bd } V_{2m}$ is a single point, and f_m is the identity on $E^k - (V_{2m-1} - V_{2m+1})$ and on G_{n-1}. A homeomorphism f is defined by $f(x) = x$, if $x \in E^k - V_1$, $f(x) = f_m(x)$, if $x \in V_{2m-1} - V_{2m+1}$, $m = 1, 2, \cdots$, and f carries the origin onto itself.

Let 0 denote the origin, let x_0 be the end point of B_n different from 0, $x_m = B_n \cap \text{Bd } V_{2m}$, $m = 1, 2, \cdots$, y_0 the end point of $f\phi(A_n)$ different from 0, and $y_m = f\phi(A_n) \cap \text{Bd } V_{2m}$, $m = 1, 2, \cdots$. Let g_0 be a semilinear homeomorphism on E^k such that g_0 is fixed on V_1 and $g_0(x_0) = x_0$. For $m = 1, 2, \cdots$, let g_m be a semilinear homeomorphism on E^k such that g_m is fixed outside $V_{2m-1} - V_{2m+1}$ and on G_{n-1}, and $g_m(y_m) = x_m$. A homeomorphism g is then defined by $g(x) = g_0(x)$, for $x \in E^k - V_1$, $g(x) = g_m(x)$, for $x \in V_{2m-1} - V_{2m+1}$, and $g(0) = 0$.

Again since there can be no knotting or linking of polyhedral simple closed curves in E^k, we may construct homeomorphisms h_m with the following properties. The map h_0 is fixed on V_2 and on G_{n-1}, and carries the subarc of $f\phi(A_n)$ from x_0 to x_1 onto the linear segment $[x_0x_1]$. For $m = 1, 2, \cdots$, h_m is fixed on $E^k - (V_{2m} - V_{2m+2})$ and on G_{n-1}, and carries the subarc of $f\phi(A_n)$ from x_m to x_{m+1} onto the linear segment $[x_mx_{m+1}]$. We set $h(x) = h_0(x)$, if $x \in E^k - V_2$, $h(x) = h_m(x)$, if $x \in V_{2m} - V_{2m+2}$, and $h(0) = 0$. Finally we take $\phi_3 = hgf$.

Corollary 1. There are no mildly wild n-frames in E^k.

Proof. Suppose $F_n = \bigcup_{i=1}^n A_i$, $n > 1$, is an n-frame such that for each $j = 1, 2, \cdots, n$, $F_n - (A_j - p)$ is tame. Then each A_j is tame and, by Theorem 1, F_n is tame.

Corollary 2. If A_1 and A_2 are tame arcs in E^k, meeting only in a common end point, then $A_1 \cup A_2$ is tame.

Theorem 2. If A is a wild simple closed curve (arc) in E^k and E is the set of points at which A fails to be locally flat, then E contains a Cantor set.

Proof. For A a simple closed curve, we know that E is nonempty [5]. By the definition of local flatness, the set of points at which A is locally flat is an open subset of A, and E is therefore closed. If we establish that E has no isolated points, there are two possibilities. First, E may be totally disconnected, in which case E is a Cantor set. Secondly, E may have a nondegenerate component K, in which case K is either an arc or $K = A$.

In order to show that there are no isolated points of \(E \), let us consider a point \(q \) of \(A \) such that there is a neighborhood \(U \) of \(q \), relative to \(A \), with \(A \) locally flat at each point of \(U - q \). We select two arcs \(A_1 \) and \(A_2 \) of \(A \) such that \(A_1 \cup A_2 \subset U \) and \(A_1 \cap A_2 = q \). By Lemma 2 and Corollary 2, \(A_1 \cup A_2 \) is tame, and \(A \) is therefore locally flat at \(q \).

This proves Theorem 2 for \(A \) a simple closed curve. A similar argument establishes the theorem for \(A \) an arc.

3. **Added in proof.** Suppose that \(M \) is a finite 1-simplex topologically embedded in \(E^k \), \(k > 3 \), \(V \) is the set of vertices of \(M \), and \(M \) is locally flat at each point of \(M - V \) (equivalently, each 1-simplex of \(K \) is locally flat at each of its interior points). By first applying Homma's Theorem, as in Lemma 1, we may construct a homeomorphism \(f \) of \(E^k \) onto itself such that \(f(M) \) is locally polyhedral at each point of \(f(M) - f(V) \). Then, by applying the technique of proof used in Theorem 1, at each point of \(f(V) \), we may construct a homeomorphism \(g \) of \(E^k \) onto itself such that \(g(f(M)) \) is polyhedral. Thus we see that \(M \) is tame. An immediate corollary is that a finite 1-simplex, topologically embedded in \(E^k \), \(k > 3 \), is tame if and only if each simplex is tame.

References

4. P. H. Doyle, *Certain manifolds with boundary which are products*, Mimeographed notes, Virginia Polytechnic Institute, Blacksburg, Va.