A METHOD FOR CONSTRUCTING DIRICHLET ALGEBRAS

A. BROWDER AND J. WERMER

I. Introduction. We give here some methods for the construction of new Dirichlet algebras out of old ones. The arguments and results are extensions of those we have given in [1]. As one application, we obtain a proper Dirichlet subalgebra of the algebra of functions continuous on the unit circle which extend analytically to the disk, and this answers a question asked in [4].

Related results, arrived at independently, are contained in Glicksberg [3].

We start with a Lemma, perhaps well known, of which a special case was used in [1].

Lemma. Let B be a Banach space, B* its conjugate space. Let U, V be weak-* closed subspaces of B*. Write W for the vector space sum of U and V. Then W is weak-* closed provided there exists a positive constant k such that

\[\|u\| + \|v\| \leq k\|u + v\|, \quad \text{all } u \text{ in } U, \ v \text{ in } V. \]

Proof. Let \(S = \{ x \in B^*: \|x\| \leq 1 \} \). According to the Krein-Smulian theorem [2, p. 429], it suffices to show \(S \cap W \) is compact (in the weak-* topology). Put \(Q = \{ u + v : u \in U, \ v \in V, \|u\| \leq 1, \|v\| \leq 1 \} \). Evidently \(Q \) is compact. Using our hypothesis, one readily checks that \(S \cap W = S \cap k \cdot Q \), a compact set.

We shall apply this lemma below. First we introduce some notations. Let \(X \) be a compact Hausdorff space, \(C(X) \) the Banach space of all complex-valued continuous functions on \(X \). The conjugate space is identified with the space of complex Baire measures on \(X \). For a closed subalgebra \(A \) of \(C(X) \), we denote by \(A^\perp \) the set of all such measures \(\mu \) satisfying \(\int fd\mu = 0 \), all \(f \in A \). If \(\mu \) is a measure, \(\|\mu\| \) is the total variation of \(\mu \), a positive measure; \(\|\mu\| \) is the norm of \(\mu \) as a linear functional on \(C(X) \). If \(f \in C(X) \), \(f\mu \) is the measure defined by \((f\mu)(E) = \int_E f d\mu \). If \(\psi \) is a homeomorphism of \(X \) on \(X \), \(\mu \circ \psi \) is the measure defined by \((\mu \circ \psi)(E) = \mu(\psi(E)) \). If \(A \) is a closed subalgebra of \(C(X) \) which contains the constants and separates the points of \(X \), we shall call it a function algebra on \(X \). If in addition the real parts of functions in \(A \) uniformly approximate to all real continuous functions on \(X \), we call \(A \) a Dirichlet algebra on \(X \). It is easy to see that \(A \) is a

Received by the editors March 5, 1963.

1 This research was partially supported by NSF Grant GP-187.

2 Fellow of the Alfred P. Sloan Foundation.
Dirichlet algebra if and only if A^\perp contains no nonzero real measures. We shall need the following fact (see [5]): If A is any Dirichlet algebra on X and M is any maximal ideal of A, there exists a unique positive measure σ_M on X with total mass 1, such that

$$\int f d\sigma_M = 0, \quad \text{all } f \in M.$$

For a general discussion of Dirichlet algebras, see [5].

If A is any function algebra on a space X, we denote by $S(A)$ the space of maximal ideals of X, taken in the Gelfand topology and hence a compact Hausdorff space. The space X has a natural homeomorphic embedding in $S(A)$ as a closed subset, and we shall regard X as contained in $S(A)$. A may be regarded as a function algebra on $S(A)$.

If A and B are function algebras on X, we shall denote by $S(A) \# S(B)$ the compact space obtained by attaching $S(A)$ to $S(B)$ along X, via the natural embeddings of X.

Example. If A is a function algebra on the circle, and $S(A)$ is the closed disk, $S(A) \# S(A)$ is a 2-sphere (see III below).

II. General results.

Theorem 1. Let A and B be Dirichlet algebras on X. Suppose there is a Baire set $E \subset X$ such that $|\mu|(E) = |\mu|(X - E) = 0$ for every $\mu \in A^\perp$, $\nu \in B^\perp$. Then $A \cap B$ is a Dirichlet algebra on X, and $S(A \cap B) = S(A) \# S(B)$.

Proof. The hypothesis implies that $\|\mu + \nu\| = \|\mu\| + \|\nu\|$ for every $\mu \in A^\perp$, $\nu \in B^\perp$. Applying the lemma, we find that $A^\perp + B^\perp$ is weak*-closed, and hence $(A \cap B)^\perp = A^\perp + B^\perp$. But if $\mu \in A^\perp$, $\nu \in B^\perp$, and $\mu + \nu$ is real, then μ and ν are each real (since μ and ν are mutually singular), so $\mu = \nu = 0$. Thus $A \cap B$ is a Dirichlet algebra. To prove the second assertion, we define a map from $S(A) \# S(B)$ into $S(A \cap B)$ as follows: If M is a maximal ideal of A or B, $M' = MC \cap BC$ is a maximal ideal of $A \cap B$. It is easy to see that the map: $M \mapsto M'$ is continuous.

To see that the map: $M \mapsto M'$ is injective, recall that to each maximal ideal M there is associated a unique positive measure σ_M on X, with total mass 1, such that $\int f d\sigma_M = 0$ for all $f \in M$. Evidently, $\sigma_M = \sigma_M'$. If $M = N$, $\sigma_M - \sigma_N$ is a real measure annihilating $A \cap B$, so $\sigma_M = \sigma_N$. If M and N are both ideals of A (or B), then it follows that $M = N$. It remains to consider the possibility: $M \in S(A)$, $N \in S(B)$. But if $M \ni S(A) - X$, $\sigma_M(X - E) = 0$. To prove this, we observe that for any $f \in M$, $\int M f^* d\sigma_M = 0$, and so $\int_{X - E} |f| d\sigma_M = 0$.

For each $x \in X$ there is an $f_x \in M$ with $f_x(x) \neq 0$. Using the con-
continuity of the f_x and the compactness of X, we get f_1, \ldots, f_k in M such that $F = \sum_{i=1}^k |f_i| > 0$ on X. But

$$\int_{X-B} F d\sigma_M = \sum_{i=1}^k \int_{X-B} |f_i| d\sigma_M = 0$$

which implies that $\sigma_M(X-E) = 0$. Similarly, if $N \subseteq S(B)-X$, $\sigma_N(E) = 0$. Since $\sigma_M = \sigma_N$, $\sigma_M(X) = 0$, which is false. It follows that M and N correspond to the same point of X. Thus the map $M \rightarrow M'$ is injective.

To see that the map is surjective, let L now denote any maximal ideal of $A \cap B$. We must show that L is contained in a maximal ideal of either A or B. Put $\sigma_L = \phi_1 + \phi_2$ where $\phi_1(Z) = \sigma_L(Z \cap E)$ for any Baire set $Z \subseteq X$. Then ϕ_1 and ϕ_2 are positive measures, not both zero. Suppose $\phi_1 \neq 0$. We then assert that L is contained in a maximal ideal of A. To prove this, it suffices to show that the ideal of A generated by L is proper. Now for any $f \in L$, $f\sigma_L \in (A \cap B)^+$, so $f\phi_1 + f\phi_2 = \mu + \nu$, where $\mu \in A^+$ and $\nu \in B^+$. Since $|f\phi_1 - \mu|(X-E) = |\nu - f\phi_2|(E)$, we conclude that $f\phi_1 = \mu$. Thus $\int g d\phi_1$ for every $f \in L$, $g \in A$. Since $\int d\phi_1 > 0$, it follows that the ideal generated by L in A is proper.

Let A be a Dirichlet algebra on X, and let ψ be a homeomorphism of X on itself. We define $A(\psi) = \{f \in A : f \circ \psi \in A\}$. $A(\psi)$ is clearly a closed subalgebra of A containing the constants. It may, of course, reduce to the constants.

We call ψ singular (with respect to A) if there exists a Baire set $E \subseteq X$ such that

$$(*) \quad |\mu|(X-E) = |\mu|(\psi^{-1}(E)) = 0, \quad \text{all} \ \mu \in A^+. $$

Theorem 2. If ψ is singular, $A(\psi)$ is a Dirichlet algebra on X. Moreover, $S(A(\psi)) = S(A) \# \psi S(A)$, the space obtained by attaching $S(A)$ to $S(A)$ along X via the map ψ; and $A(\psi)$ is a proper subalgebra of A, unless $A = C(X)$.

Proof. Let $B = \{f \in C(X) : f \circ \psi \in A\}$. Since A is a Dirichlet algebra on X, so is B, and clearly $A(\psi) = A \cap B$. Now $\nu \in B^+$ if and only if $\int f \circ \psi^{-1} d\nu = 0$ for all $f \in A$, and so if and only if $\nu \circ \psi \in A^+$. Let E be the set satisfying $(*).$ Then $|\mu|(X-E) = 0$ for all $\mu \in A^+$; also if $\nu \in B^+$, $|\nu|(E) = |\nu \circ \psi|(\psi^{-1}(E)) = 0$, since $\nu \circ \psi \notin A^+$. Thus Theorem 1 applies to the algebras A and B, yielding that $A(\psi) = A \cap B$ is a Dirichlet algebra on X, and that $S(A(\psi)) = S(A) \# S(B) = S(A) \# \psi S(A)$. If $A(\psi) = A$, then $A \subseteq B$, so $A^+ \supseteq B^+$ so for every $\nu \in B^+$, $|\nu|(X-E) = |\nu|(E) = 0$, thus $\nu = 0$, and hence $B = C(X)$, whence $A = C(X)$.

Suppose next that A is a function algebra on X and G a group of homeomorphisms of X on itself, such that $f \circ g \in A$, for every $f \in A$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
CONSTRUCTION OF DIRICHLET ALGEBRAS

In a natural way each \(g \in G \) extends to a homeomorphism of \(S(A) \) on itself: if \(M \) is a maximal ideal of \(A \), \(g(M) = \{ f \in A : f \circ g \in M \} \).

Put

\[A' = \{ f \in A : f = f \circ g \text{ for every } g \in G \}. \]

Then \(A' \) is a uniformly closed algebra of functions on \(X \). We denote by \(X/G \) the identification space induced by \(G \). \(A' \) may be regarded as an algebra of functions on \(X/G \).

Theorem 3. Suppose \(G \) is finite. Then \(S(A') = S(A)/G \). If \(A \) is a Dirichlet algebra on \(X \), then \(A' \) is a Dirichlet algebra on \(X/G \).

Proof. We may regard \(A' \) as an algebra of functions on \(S(A)/G \). Thus there is an obvious continuous map \(\tau \) from \(S(A)/G \) into \(S(A') \).

To see that \(\tau \) is injective, let \(m_1, m_2 \) be points of \(S(A) \) giving rise to distinct points of \(S(A)/G \), i.e., such that \(g(m_1) \neq g(m_2) \) for all \(g \in G \). Choose \(f \in A \) such that \(f(g(m_1)) \neq 0 \) for all \(g \in G \), \(f(m_2) = 0 \). Put \(F = \prod_{g \in G} f \circ g \). Then \(F \in A', F \circ g = F \) for every \(g \in G \), so \(F \in A' \), and \(F(m_1) \neq 0 = F(m_2) \). Thus \(\tau(m_1), \tau(m_2) \) are distinct elements of \(S(A') \).

To show that \(\tau \) is surjective, consider a maximal ideal \(M \) of \(A' \) and let \(M_1 \) denote the ideal generated by \(M \) in \(A \). Suppose \(M_1 \) is not proper. Then we can find \(f_1, \ldots, f_n \) in \(M \) and \(k_1, \ldots, k_n \) in \(A \) with

\[\sum_{i=1}^{n} f_i k_i = 1. \]

Put \(k'_i = \sum_{g \in G} k_i \circ g \). Then \(k'_i \in A' \) and

\[\sum_{i=1}^{n} f_i k'_i = N = \text{order of } G. \]

Hence \(M \) is the unit ideal in \(A' \), a contradiction. Thus \(M_1 \) is proper, and \(\tau \) maps the point of \(S(A)/G \) induced by \(M_1 \) on \(M \). Thus \(\tau \) is surjective, and so \(S(A)/G = S(A') \).

We now let \(A \) be a Dirichlet algebra on \(X \). Let \(u \) be a real continuous function on \(X \) such that \(u \circ g = u \) for all \(g \in G \), so that \(u \) can be regarded as defined on \(X/G \). Let \(\epsilon > 0 \) be arbitrary. Since \(A \) is a Dirichlet algebra, there exists \(f \) in \(A \) such that \(\| \Re f - u \| < \epsilon \), (where \(\| \| \) denotes the maximum modulus on \(X \)).

Put \(F = (1/N) \sum_{g \in G} f \circ g \). Clearly \(F \in A' \) and \(\| \Re F - u \| < \epsilon \), since \(\| \Re f \circ g - u \| < \epsilon \) for each \(g \in G \). Hence \(A' \) is a Dirichlet algebra on \(X/G \).

Note. In the latter part of the theorem, the same argument can be made if \(G \) is compact (instead of finite), with integration over \(G \) re-
placing summation. Also, the same method shows that if A is a maximal subalgebra of $C(X)$, then A' is a maximal subalgebra of $C(X/G)$.

III. Applications. Let Γ denote the unit circle $|z| = 1$ in the z-plane, and A_0 the algebra of all continuous functions on Γ which admit continuous extensions to $|z| \leq 1$, analytic on $|z| < 1$. It is well known that: A_0 is a Dirichlet algebra on Γ; $S(A_0)$ can be identified with the closed disk $|z| \leq 1$; every measure in A_0^\ast is absolutely continuous with respect to Lebesgue measure on Γ (F. and M. Riesz); A_0 is a maximal subalgebra of $C(\Gamma)$ (see [5]).

Let ψ be a homeomorphism of Γ on Γ such that for some Borel set E of Lebesgue measure 2π, $\psi^{-1}(E)$ has Lebesgue measure zero. We shall call ψ singular. Recall that by definition, $A_0(\psi) = \{f \in A_0 | f \circ \psi \in A_0\}$. In view of the facts summarized above, Theorem 2 applies, to give:

Corollary 1. $A_0(\psi)$ is a Dirichlet algebra on Γ, and is a proper subalgebra of A_0. $S(A_0(\psi))$ is a 2-sphere.

Let ψ be a singular homeomorphism of Γ on itself such that $\psi \circ \psi = \text{identity}$. Clearly $f \circ \psi \in A_0(\psi)$ for every $f \in A_0(\psi)$. Put

$$A_\psi = \{f \in A_0 | f = f \circ \psi\}.$$

Let G be the two element group generated by ψ. Then $A_\psi = \{f \in A_0(\psi) | f = f \circ g \text{ for every } g \in G\}$. Thus Theorem 3 can be applied, with $A = A_0(\psi)$ and $A' = A_\psi$. We get, first

Corollary 2. A_ψ is a Dirichlet algebra on Γ/ψ.

The topology of $S(A_\psi)$ and of Γ/ψ depends on whether or not ψ preserves orientation on Γ.

Corollary 3. If ψ reverses orientation, Γ/ψ is (homeomorphic to) a closed interval and $S(A_\psi)$ is a 2-sphere. If ψ preserves orientation and has no fixed points, Γ/ψ is a circle and $S(A_\psi)$ is a (real) projective plane.

Proof. The assertions for Γ/ψ are easily verified. By Theorem 3, $S(A_\psi) = S(A_0(\psi))/G$. Since $S(A_0(\psi))$ is a 2-sphere, $S(A_0(\psi))/G$ is easily seen to be a closed disk with the boundary identification induced by ψ. From this the assertions follow.

Note. The situation when ψ reverses orientation was described in [1]. The method of proof of the following result was used in the corresponding theorem in [1].

Theorem 4. A_ψ is a maximal subalgebra of $C(\Gamma/\psi)$.
Proof. Let B be a closed subalgebra of $C(\Gamma/\psi)$. We may regard B as a closed subalgebra of $C(\Gamma)$ such that $f = f \circ \psi$ for every $f \in B$. Assume $A_\psi \subset B$. Let \mathcal{O} denote the space of all measures ν on Γ such that $\nu = -\nu \circ \psi$, so $\mathcal{O} = C(\Gamma/\psi)^\perp$ under the obvious identifications. If $\mu \in A_\psi^*$ and $\nu \in \mathcal{O}$, we have

$$
\|\mu\| = \frac{1}{2} \|\mu + \mu \circ \psi\| = \frac{1}{2} \|\mu + \nu + \mu \circ \psi + \nu \circ \psi\| \\
\leq \frac{1}{2} (\|\mu + \nu\| + \|\mu \circ \psi + \nu \circ \psi\|) = \|\mu + \nu\|.
$$

Hence by the Lemma $A_\psi^* + \mathcal{O}$ is weak-* closed, and therefore $= A_\psi^\perp$. Thus if $\lambda \in B^\perp$, $\lambda = \mu + \nu$ for some $\mu \in A_\psi^\perp$, $\nu \in \mathcal{O}$. If $B \neq C(\Gamma/\psi)$, then we have such a λ outside \mathcal{O}, so $0 \neq \mu = \lambda - \nu \in A_\psi^* \cap B^\perp$. Now for any $f \in B$, $f_\mu \in B^\perp$, so $f_\mu = \mu_1 + \nu_1$ for some $\mu_1 \in A_\psi^\perp$, $\nu_1 \in \mathcal{O}$. Thus $\mu_1 - f_\mu = f_\mu \circ \psi - \mu_1 \circ \psi$. Since ψ is singular, $f_\mu - \mu_1 = 0$, or $f_\mu \in A_\psi^\perp$. Thus $\int g d\mu = 0$ for every $g \in A_\psi$, $f \in B$. Since $\mu \neq 0$ and A_ψ is a maximal algebra, this implies $B \subset A_\psi$, and thus $B = A_\psi$. Hence A_ψ is maximal.

Appendix. As an application of the algebras $A_\psi(\Psi)$ introduced above, we now give a closure result on the unit circle Γ. Let Ψ be a homeomorphism of Γ which reverses orientation on Γ. We do not assume here that Ψ is singular.

Theorem 5. Every continuous function on Γ can be uniformly approximated by linear combination of powers z^n, $n \geq 0$, and Ψ^n, $n \geq 0$.

The proof makes use of arguments given in [1]. Let $f \in A_\psi(\Psi)$. Let α be a value taken by f in $|z| < 1$. Suppose $\alpha \neq f(\Gamma)$. Put $g = f - \alpha$. Then $g \in A_\psi(\Psi)$ and $\var\arg g > 0$. But $\var\arg g = -\var\arg g(\Psi)$, since Ψ reverses direction, and $\var\arg g(\Psi) \geq 0$, since $g(\Psi) \in A_\psi$. This is a contradiction, and so $\alpha \in f(\Gamma)$. Thus $f(|z| < 1) \subset f(\Gamma)$. We conclude that, unless f is a constant, $f(\Gamma)$ has positive area in the plane.

Let μ be any measure on Γ with $\mu \perp z^n$, $n \geq 0$, and $\mu \perp \Psi^n$, $n \geq 0$. All we need to do is to show that μ must be 0. By the F. and M. Riesz theorem, $d\mu = h(t)dt$ on $(-\pi, \pi)$, where there is some η in the Hardy class H^1 with $\eta(0) = 0$ and $\eta(e^{it}) = h(t)$. Put $H(\theta) = \int_{-\pi}^\pi h(t)dt$. It is easy to verify that $H \in A_\psi$.

Because we may rotate it, that $f(\Gamma)$ has no loss of generality to assume that $\Psi(-1) = -1$. We can then set: $\psi(e^{it}) = e^{i\eta(t)}$, where ψ is a strictly decreasing continuous function on $(-\pi, \pi)$ with $\psi(-\pi) = \pi, \psi(\pi) = -\pi$. Now

$$
\int_{-\pi}^\pi h(t)e^{i\eta(t)}dt = 0, \quad n \geq 0.
$$
Integrating by parts, we get
\[\int_{-\pi}^{\pi} H(t) d(e^{i\psi(t)}) = 0, \quad n \geq 0. \]
Putting \(u = \psi(t) \) in this integral, we have
\[\int_{-\pi}^{\pi} H(\psi^{-1}(u)) d(e^{iu}) = 0, \quad n \geq 0. \]
Hence \(H(\psi^{-1}) \subset A_\Phi \). Thus \(H \subset A_\Phi(\Psi^{-1}) \). Since \(\Psi^{-1} \) also reverses orientation, we conclude by the above that either \(H \) is constant or \(H(\Gamma) \) has positive area. But \(H \) is absolutely continuous. Hence \(H \) is constant and so 0, whence \(\mu = 0 \), and we are done.

References

Brown University