REMARKS ON THE CLASSIFICATION OF
RIEMANN SURFACES

K. V. RAJESWARA RAO

1. Introduction. In [5] Royden constructed two Riemann surfaces to show that neither of the classes O_{AB} and O_{AD} of Riemann surfaces is quasiconformally invariant. In the present note it is shown how a slight modification of Royden's argument serves to establish the more general

Theorem 1. No class of Riemann surfaces that contains O_{L} and is contained in O_{AD} is quasiconformally invariant.

This result is then used to prove

Theorem 2. There is no inclusion relation between either of O_{L} and $O_{L'}$, and any one of O_{HD}, O_{FD} and O_{FB}.

2. Notation and background. For any class T of functions that can be considered on a Riemann surface, let O_{T} stand for the class of all Riemann surfaces that do not admit nonconstant members of T. Denote by L the class of Lindelöfian meromorphic functions (see [2]), i.e. meromorphic functions of bounded characteristic, and by L' the class of those members of L which are pole-free. AB and AD denoting, respectively, the classes of bounded and Dirichlet-bounded analytic functions, it is known (see [2, p. 442] and [1, p. 201 and p. 256]) that

(1) $O_{L} \subset O_{L'} \subset O_{AB} \subset O_{AD}$.

Let, now, HD denote the class of Dirichlet-bounded harmonic functions and FB and FD signify, respectively, the classes of bounded and Dirichlet-bounded harmonic functions whose conjugate periods vanish along dividing cycles. It is clear that

(2) $O_{HD} \subset O_{FD} \subset O_{AD}$,

and it is known [7, p. 469] that

(3) $O_{FB} \subset O_{FD}$.

3. The examples. Denote by S the region of the complex plane obtained by punching out $z = 0$ and $z = 2$ from the disc $|z| < 3$. Let

Received by the editors January 22, 1963 and, in revised form, March 25, 1963.

1 Supported by U. S. Army Research Office (Durham) Grant No. DA-ARO(D)-31-124-G40, University of California, Los Angeles.
Let \(W_1 \) be a two-sheeted conformal cover of \(S \) having branch points over \(z = 1/n \) and \(z = 2 - 1/n \), \(n = 2, 3, \ldots, \infty \), and such that two curves of \(W_1 \) lie over the unit circle in \(S \). Evidently, the projection map from \(W_1 \) to \(S \) is an AD function, i.e.

\[
W_1 \subseteq O_{AD}.
\]

Choose, now, \(s \), an irrational multiple of \(2\pi \). Cut the upper sheet of \(W_1 \) over the unit circle \(|z| = 1 \) and identify the point over \(e^{i\theta} \) on the inside of the cut with the point over \(e^{i\theta+i\pi} \) on the outside. Denote the resulting Riemann surface by \(W_2 \). We claim that

\[
W_2 \subseteq O_L.
\]

For, otherwise, let \(f \in L \) on \(W_2 \). The projection map from the subregion \(W'_2 \) of \(W_2 \) over the annulus \(0 < |z| < 1 \) into this annulus is of constant valence two. Hence, by a theorem of Heins [2, p. 444], \(f \) is the quotient of two bounded analytic functions, say, \(g \) and \(h \), on \(W'_2 \). But then, the argument of Royden [5, p. 6] shows that \(g \) and \(h \) are single valued functions of \(z \) for \(|z| < 1 \), and hence, so is \(f \). Similarly, \(f \) is a single valued function of \(z \) for \(1 < |z| < 3 \). Hence, over \(|z| = 1 \), we have \(f(e^{i\theta}) = f(e^{i\theta+i\pi}) \).

Iterating we obtain that

\[
f(e^{i\theta}) = f(e^{i\theta+im\pi}), \quad m = 1, 2, \ldots, \infty.
\]

Since the set of points \(\{e^{i\theta+im\pi}\} \) is dense in the unit circle, this implies that \(f \) is a constant, which is a contradiction that establishes (5).

Now, the map \(\phi: W_1 \rightarrow W_2 \), obtained by taking \(\phi \) to be the identity except on the annulus over \(1/2 < |z| < 1 \) in the upper sheet of \(W_1 \) and \(\phi(re^{i\theta}) = re^{i\theta+i\pi(2\pi-1)} \) on this annulus, is a quasiconformal homeomorphism of \(W_1 \) onto \(W_2 \). This observation, together with (4) and (5), establishes Theorem 1.

Remarks. (i) As noted by Royden [5, p. 6], the map \(\phi \) is "ultimately" conformal. Hence, the property of belonging to any of the classes of Theorem 1 is not a property of the ideal boundary [6, p. 58].

(ii) Examples of classes of Riemann surfaces for which Theorem 1 is applicable are \(O_L, O_L', O_{AB}, O_{AD} \) and the classes \(O_{AM} \) [3, p. 179].

(iii) A construction, similar to the one above, carried out over the Riemann sphere instead of the disc \(|z| < 3 \), yields an example to show that the class of parabolic Riemann surfaces admitting meromorphic functions of bounded valence is not preserved under quasiconformal maps.

\(^2 \) The author is indebted to the referee for pointing this out.
4. **Proof of Theorem 2.** It is known [6, p. 57] that O_{FD} is quasi-conformally invariant. This, in view of (2) and Theorem 1, implies that

$$O_L \subseteq O_{FD}, \quad O_L \subseteq O_{HD}. \quad (6)$$

Also, there exists [2, p. 441] a planar surface which does not belong to $O_{L'}$ but belongs to O_{AB}. Since every cycle on a planar surface is dividing, this implies that

$$O_{FB} \subseteq O_{L'} \quad (7)$$

Finally, in view of Theorem 26H of [1, p. 264] and (1), we have

$$O_{HD} \subseteq O_{L'} \quad (8)$$

Combining the first part of (1) with (6)–(8), we obtain the result.

Note. An alternative proof of the second part of (6) was given in [4].

References

University of California, Los Angeles