ON FOGUEL’S ANSWER TO NAGY’S QUESTION

P. R. HALMOS

Nagy’s question is whether or not every power-bounded operator is similar to a contraction [3]. (“Power-bounded” means that the norms of the positive powers are bounded.) Foguel’s answer is no [1]. The purpose of this note is to look at Foguel’s ingenious counterexample from a point of view somewhat different from his own. The advantage of the new look is that it is less computational; its drawback is that the intuitive motivation is less transparent.

Let H_0 be a Hilbert space with an orthonormal basis \{e_0, e_1, e_2, \ldots \}, and let S be the unilateral shift on H_0 ($Se_n = e_{n+1}$, $n = 0, 1, 2, \ldots$). Let J be an infinite set of natural numbers that is “sparse” in the sense that if i and j belong to J and $i < j$, then $2i < j$. (Example: J can be the set of positive integral powers of 3.) Let Q be the projection from H_0 onto the span of all the e_i’s with j in J. If H is the direct sum of two copies of H_0 (the set of all ordered pairs (f, g) with f and g in H_0), then every operator on H is given by a two-by-two matrix whose entries are operators on H_0. Principal assertion: if

$$A = \begin{pmatrix} S^* & Q \\ 0 & S \end{pmatrix},$$

then A is power-bounded, but A is not similar to a contraction.

A trivial induction shows that

$$A^n = \begin{pmatrix} S^{*n} & Q_n \\ 0 & S^n \end{pmatrix},$$

where $Q_0 = 0$ and $Q_{n+1} = \sum_{i=0}^{n} S^{*n-i}QS^i$, $n = 0, 1, 2, \ldots$. To prove that A is power-bounded is the same as to prove that the norms of the Q’s are bounded. It turns out, in fact, that each Q is a partial isometry whose range is spanned by a set of e’s. To prove this, consider $Q_{n+i}e_m = \sum_{i=0}^{n} S^{*n-i}Qe_{m+i}$. If $n-i > m+i$, then $S^{*n-i}Qe_{m+i} = 0$, because either $m+i \notin J$ (in which case $Qe_{m+i} = 0$), or $m+i \in J$ (in which case S^{*n-i} annihilates e_{m+i}). Among the remaining values of i (the ones for which $i \leq n \leq m+2i$) at most one can be such that $m+i \in J$. Reason: if both i and j have these properties, and, say, $i < j$, then $m+i < m+j$, so that $2(m+i) < m+j$, or $m+2i < j$, which

Received by the editors May 15, 1963.

1 Research supported in part by a grant from the National Science Foundation.
contradicts the relation \(j \leq n \leq m + 2i \). Conclusion: \(Q_{n+i}e_m \) is either 0 or \(e_{m+2i-n} \); it is the latter just in case there exists an \(i \) (necessarily unique) such that \(i \leq n \leq m + 2i \) and \(m + i \in J \). This conclusion will be used again presently; its function so far was to prove that \(A \) is power-bounded.

It remains to prove that \(A \) is not similar to a contraction. For this purpose Foguel introduces the set \(Z(A) \) of all those vectors \(f \) in \(H \) for which \(A^n f \to 0 \) weakly as \(n \to \infty \). (Here \(H \) can be an arbitrary Hilbert space and \(A \) an arbitrary operator on it.) The pertinent lemma is that if \(A \) is similar to a contraction, then \(Z(A) \cap (Z(A^*))^\perp = \{0\} \). (A proof of the lemma appears below.) The conclusion of the preceding paragraph makes it possible to apply the lemma, as follows. If \(j \in J \), then \(Q_{2j+i}e_0 = e_0 \). Since \(A^{2j+1}(0, e_0) = (Q_{2j+i}e_0, S^{2j+1+i}e_0) = (e_0, e_{2j+1}) \), so that \(A^{2j+1}(0, e_0) \to (e_0, 0) \) weakly as \(j \to \infty \) (through values in \(J \)), it follows that if \((f, g) \in Z(A^*) \) (that is, if \(A^*(f, g) \to (0, 0) \) weakly as \(n \to \infty \)), then

\[
(\langle e_0, 0 \rangle, (f, g)) = \lim_{j \to J} (A^{2j+1}(0, e_0), (f, g)) = \lim_{j \to J} (\langle 0, e_0 \rangle, A^{2j+1}(f, g)) = 0,
\]

so that \((e_0, 0) \in (Z(A^*))^\perp \). Since, however, \(A \langle e_0, 0 \rangle = (0, 0) \), the vector \((e_0, 0) \) belongs to \(Z(A) \) also, and consequently \(A \) cannot be similar to a contraction.

For the lemma Foguel refers to an earlier paper. Here is an alternative approach, via the theory of strong unitary dilations [2].

(1) If \(U \) is unitary, then \(Z(U) \subseteq Z(U^*) \). Indeed, represent \(U \) as multiplication by a measurable function \(\phi \) of constant modulus 1 on some \(L^2(\mu) \). It is to be proved that if \(\int f \phi d\mu = 0 \) for every \(g \), then \(\int \phi f d\mu = 0 \) for every \(h \). To prove it, given \(h \), put \(g = (\text{sgn} f)^h \), and form the complex conjugate of the hypothesis.

(2) If \(C \) is a contraction, then \(Z(C) \subseteq Z(C^*) \). To prove this, let \(U \) be a minimal strong unitary dilation of \(C \). That is: if \(C \) operates on \(H \), then \(U \) operates on a larger Hilbert space \(K \); if \(P \) is the projection from \(K \) onto \(H \), then \(C^nf = Pu^nf \) for all \(f \) in \(H \) \((n = 1, 2, 3, \ldots)\). For each \(f \) in \(Z(C) \), let \(K_f \) be the set of all those \(g \) in \(K \) for which \((U^nf, g) \to 0 \). Since \(f \in Z(C) \), it follows that \(H \subseteq K_f \); indeed, if \(g \in H \), then \((U^nf, g) = (C^nf, g) \). It is trivial that \(K_f \) is a linear manifold; the power-boundedness of \(U \) implies that \(K_f \) is closed. Since \(K_f \) is invariant under both \(U \) and \(U^* \), the minimality of \(U \) implies that \(K_f = K \) for each \(f \) in \(Z(C) \). This implies that \(Z(C) \subseteq Z(U) \), and hence, by (1), that \(Z(C) \subseteq Z(U^*) \). Since \(U^* \) is a strong dilation of \(C^* \), it follows that \(Z(C) \subseteq Z(C^*) \).

The promised lemma is now within reach. If \(A \) is similar to a con-
traction C, say $A = TCT^{-1}$, then it is easy to verify that $Z(A) = TZ(C)$ and $(Z(A^*))^\perp = T(Z(C^*))^\perp$. Since, by (2), $Z(C) \cap (Z(C^*))^\perp = \{0\}$, the conclusion $Z(A) \cap (Z(A^*))^\perp = \{0\}$ follows by an application of T.

REFERENCES

UNIVERSITY OF MICHIGAN