ON CLANS OF NON-NEGATIVE MATRICES

DENNISON R. BROWN

A clan is a compact connected topological semigroup with identity. Professor A. D. Wallace has raised the following question [9]: Is a clan of real \(n \times n \) matrices with non-negative entries, which contains the identity matrix, necessarily acyclic? That is to say, do all of the Alexander-Čech cohomology groups with arbitrary coefficients (in positive dimensions) vanish? In this paper the slightly stronger result, that any non-negative matrix clan is contractible, is obtained. This follows from the result, interesting in itself, that a compact group of non-negative matrices is finite (Theorem 2).

The author wishes here to express his sincere gratitude to Professor R. J. Koch for his helpful advice and encouragement.

The set of order \(n \) non-negative matrices is denoted by \(N_n \). The real and complex general linear groups of order \(n \) are represented by \(\text{Gl}(n, R) \) and \(\text{Gl}(n, C) \), respectively. The semigroup terminology used is that of [8]; in particular, \(K \) denotes the minimal ideal of a clan \(S \), \(E \) denotes the set of idempotents of \(S \), and for \(e \in E \), \(H(e) \) is the maximal subgroup of \(S \) containing \(e \). An isomorphism is an isomorphism which is also a homeomorphism. The topology of \(N_n \) is any locally convex topology; for example, the topology of Euclidean \(n^2 \)-space.

The equation \(M = \text{diag}(A, B) \) means that \(M \) is the matrix which, in 2\(\times \)2 block form, has the square submatrix \(A \) in the upper left corner, the square submatrix \(B \) in the lower right corner, and zero entries elsewhere. The \(k \times k \) identity matrix is denoted by \(I_k \) when used as a submatrix. The set of eigenvalues of a matrix \(M \) is denoted by \(\lambda(M) \).

The well-known theorem [1, p. 80] that a non-negative matrix \(M \) has a real eigenvalue \(r \) such that if \(\lambda \in \lambda(M) \), then \(|\lambda| \leq r \) is used without proof. Also used without proof is the following theorem, due to Karpelevich [3], and stated in less than full generality:

Theorem 1. Let \(M \in N_n \), and let \(M \) have maximal real eigenvalue 1. If \(\lambda \in \lambda(M) \), \(|\lambda| = 1 \), then \(\lambda^k = 1 \) for some \(k \leq n \).

Presented to the Society, November 16, 1962; received by the editors May 25, 1963.

1 This work was supported in part under NSF Contract G-14085, and is part of a dissertation presented to the Graduate Faculty of Louisiana State University.
Lemma 1. Let $X \in G$, a compact subgroup of $\text{Gl}(n, C)$. If $\lambda \in S(X)$, then $|\lambda| = 1$.

Proof. The determinant function maps G homomorphically into the unit circle. Hence $1 = |\det X| = |\lambda_1 \lambda_2 \cdots \lambda_n|$, $\lambda_i \in S(X)$. Let $P \in \text{Gl}(n, C)$ such that $A = PXP^{-1}$ is triangular, diagonal $A = (\lambda_1, \lambda_2, \cdots, \lambda_n)$. Since diagonal $A^t = (\lambda_1, \lambda_2, \cdots, \lambda_n)$ and the group PGP^{-1} is compact, it follows that $|\lambda_i| \leq 1, i = 1, \cdots, n$. This is clearly sufficient.

Theorem 2. Let $H(e)$ be a compact topological group, $H(e) \subset N_n$. Then $H(e)$ is finite.

Proof. Define $f : H(e) \to \text{Gl}(n, R)$ by $f(x) = x + I - e$. The function f is clearly an isomorphism. Since $f(H(e))$ is a compact subgroup of $\text{Gl}(n, R)$, $H(e)$ is a Lie group. The identity component C of $H(e)$ is therefore open; hence it suffices to prove that $H(e)$ is totally disconnected. If $C \neq \{e\}$, then C has a nontrivial one parameter group [5, p. 105], hence elements of infinite order. The proof is then completed by contradiction when it is shown that every element of $H(e)$ has finite order.

Let $X \in H(e)$. There exists $B \in \text{Gl}(n, R)$ such that $B(e)B^{-1} = \text{diag}(I_k, 0)$, where rank e is assumed equal to k. Since $B(e)B^{-1}$ is an identity for BXB^{-1}, $BXB^{-1} = \text{diag}(X_k, 0)$, where X_k is a rank k real $k \times k$ matrix. Let f be the isomorphism of $BH(e)B^{-1}$ into $\text{Gl}(n, R)$ defined by $f(BXB^{-1}) = BXB^{-1} + I - BeB^{-1}$. Since $f(BH(e)B^{-1})$ is isomorphic to $H(e)$, it suffices to find an integer m such that $f(BXB^{-1})^m = f(BeB^{-1}) = I$.

Assume $k < n$. Note $S(X) = S(BXB^{-1}) = S(f(BXB^{-1})) \cup \{0\}$. For if $\lambda \in S(BXB^{-1})$, $\lambda \neq 0$, then det($X_k - \lambda I_k$) = 0. Hence
\[\det(f(BXB^{-1}) - \lambda I) = (1 - \lambda)^{n-k} \cdot \det(X_k - \lambda I_k) = 0 \]
and
\[\lambda \in S(f(BXB^{-1})). \]

Conversely, if $\lambda \neq 1$ and $\lambda \in S(f(BXB^{-1}))$ then $\lambda \in S(BXB^{-1})$. Finally, by Lemma 1, $\lambda \in S(f(BXB^{-1}))$ gives $|\lambda| = 1$; therefore $\lambda \in S(BXB^{-1})$, $\lambda \neq 0$ also yields $|\lambda| = 1$. Since $X \in N_n$, $1 \in S(BXB^{-1})$, and $S(BXB^{-1}) = S(f(BXB^{-1})) \cup \{0\}$. By Theorem 1, $S(BXB^{-1}) \subset \{\lambda : \lambda^t = 1, t \leq n\} \cup \{0\}$. If $k = n$, a similar argument can be given. In either event $S(f(BXB^{-1})) \subset \{\lambda : \lambda^t = 1, t \leq n\}$. Let $P \in \text{Gl}(n, C)$ such that $D = Pf(BXB^{-1})P^{-1}$ is lower triangular and diagonal $D = \{\lambda_1, \lambda_2, \cdots, \lambda_n\}$. Note $\lambda_i \in S(f(BXB^{-1}))$, $i = 1, \cdots, n$. Let $m =$ least common multiple $\{t_i : \lambda_i^t = 1, t_i \leq n\}$. Then diagonal $D^m = \{1, 1, \cdots, 1\}$. Now
if \(j = i - 1 \), then \((D^m)_{ij} = \rho \cdot (D^m)_{ij}\). Hence, by the compactness of
\(Pf(BH(e)B^{-1})P^{-1}, (D^m)_{ij} = 0, j = i - 1 \). By a straightforward induction,
it follows that \((D^m)_{ij} = 0, j < i, i = 1, \ldots, n \). Hence \(D^m = I\), and therefore
\(f(BXB^{-1})\) has order \(\leq m \), which completes the proof.

COROLLARY 1. Let \(S \) be a continuum semigroup in \(N_n \). Then \(K \subseteq E \).

Proof. Fix \(e \in E \cap K \). Then \(eSe = H(e) \) [8]. Since \(eSe \) is a continuum,
it is degenerate; hence \(H(e) = \{ e \} \). The corollary now follows from the fact that
\(K = \bigcup \{ H(e) : e \in K \} \).

If \(S \) is a clan, it is known [8] that \(H^*(S) = H^*(eSe) \) for \(e \in K \cap E \),
\(n \geq 0 \). If, also, \(S \subseteq N_n \), then by Theorem 2, \(H^*(S) = H^*(\{ e \}) = 0, n > 0 \).
Hence \(S \) is acyclic. It will now be shown that \(S \) is contractible. The
following lemma is due to Gluskin [2].

LEMMA 2. Let \(S \) be an \(n \times n \) complex matrix semigroup. Let \(e, f \in E \) and
\(f \in eSe \). If \(f \neq e \), then \(\text{rank } f < \text{rank } e \).

Proof. Suppose \(\text{rank } e = r, e \neq f \). Choose \(v \) such that \(vev^{-1} = \text{diag}(I_r, 0) \).
Then \(vfv^{-1} = \text{diag}(g, 0) \), since \(e \) is an identity for \(f \). Note
\(g \) is an \(r \times r \) complex matrix, and \(g^2 = g \). Since \(\text{rank } vfv^{-1} = \text{rank } f \), it
suffices to show \(\det(g) = 0 \). If this is not the case, then \(g \) is an idempotent
in \(\text{Gl}(r, \mathbb{C}) \); hence \(g = I_r \). But this implies \(f = e \), contrary to
assumption. This completes the proof.

An \(I \)-semigroup is a clan on an interval such that one endpoint is
an identity and the other a zero. It is shown in [6] that the only types
of \(I \)-semigroups are the following: (i) \(S \) has the multiplication of the
real interval \([0, 1]\); (ii) \(S \) has a multiplication isomorphic to the interval
\([1/2, 1]\) under the operation \(x \circ y = \max \{1/2, xy\} \); (iii) \(S \) is
idempotent and has a multiplication isomorphic to the interval \([0, 1]\)
under the operation \(x \circ y = \min \{x, y\} \); (iv) \(S \) is the union of a collection of semigroups of types (i), (ii), and (iii) which meet only at
their respective endpoints.

LEMMA 3. Let \(S \) be a clan in which, for each \(e \in E \), \(H(e) \) is totally dis-
connected. Suppose also that there exists a neighborhood \(V \) of 1 such that
\(V \cap E = 1 \). Then there is an \(I \)-semigroup in \(S \) having 1 as an identity.

Proof. It is well known [7] that the existence of the neighborhood
\(V \) above is sufficient to insure a local one-parameter semigroup
\(\sigma([0, 1]) \) in \(V \) such that \(\sigma(0) = 1, \sigma(a) \in H(1), 0 < a \leq 1 \), and if \(\sigma(a) = \sigma(b)g, g \in N(1) \), then \(a = b \) and \(g = 1 \). In the same paper, it is shown that
\(\sigma \) can be extended to a full one-parameter semigroup by defining
\(\sigma(t) = \sigma(1) \sigma(t - 1) \) for \(t \in [1, 2] \) and proceeding inductively. Now the
closure of \(\sigma([0, \infty)) \) is a commutative clan, hence its minimal ideal is
a connected group, and therefore a single point. It follows by a theorem of Koch [4] that this clan has exactly 2 idempotents and is an \(I \)-semigroup.

Theorem 3. Let \(S \) be a nondegenerate clan in \(N_n \). Then \(S \) contains an \(I \)-semigroup from 1 to \(K \), and \(S \) is contractible.

Proof. By Lemma 2, there exists a neighborhood \(V \) of 1 containing no other idempotents; this follows from the fact that the rank of an idempotent equals its trace. By Theorem 2 each \(H(e) \) is finite. It follows from Lemma 3 that there exists an \(I \)-semigroup from 1 to \(e \in E \). By Lemma 2, rank \(e < \text{rank 1} \). If \(e \in K \), then \(eSe \) is a nondegenerate subclan with identity \(e \), and the above argument produces an \(I \)-semigroup from \(e \) to \(f \in E \), rank \(f < \text{rank e} \). In this manner, an idempotent of minimal rank in \(S \) is obtained, which clearly belongs to \(K \). The union of the \(I \)-semigroups constructed above is the desired \(I \)-semigroup.

Let \(T \) be an \(I \)-semigroup in \(S \) with endpoints 1 and \(e \in K \cap E \). Define \(F: S \times T \rightarrow S \) by \(F(x, t) = txt \). Then \(F(x, 1) = x \), and \(F(x, e) = exe = e \), for each \(x \in S \). Hence \(S \) is contractible. This completes the proof.

By Lemma 2, no \(I \)-semigroup in \(N_n \) can be of type (iii) mentioned above. On the other hand, it is well known that if \(A \) is a nilpotent \(n \times n \) complex matrix, then \(A^n = 0 \). It follows that the \(I \)-semigroups in \(N_n \) are either of type (i), or of type (iv), constructed by joining together the endpoints of semigroups of type (i).

Bibliography

Louisiana State University