A function $u = u(x)$, $x = (x_1, \ldots, x_n)$, is said to have bounded mean oscillation on a bounded cube C_0 if $u(x)$ is integrable over C_0 and there is a constant K such that for every parallel subcube C, and some constant a_C, the inequality

$$\int_C |u(x) - a_C| \, dx \leq KR^n$$

holds, R being the edge length of C. Such functions have been investigated by John and Nirenberg [1]. Their result states that if $u(x)$ has bounded mean oscillation on C_0 and satisfies (1) then the function

$$\mu(\sigma) = \text{meas}\{ |u(x) - a_{C_0}| > \sigma \}$$

("meas" means Lebesgue measure) satisfies

$$\mu(\sigma) \leq B R_0^{n-\epsilon} e^{-b\sigma/K},$$

where R_0 is the edge length of C_0 and B, b are constants depending only on n.

In this paper I show that if $u(x)$ satisfies an inequality of the form (1) with R^n replaced by $R^{n+\epsilon}$, $\epsilon > 0$, then u is Hölder continuous with exponent ϵ (this condition is of course also necessary for Hölder continuity). Morrey's Lemma then follows as a simple corollary. The method of proof is essentially the same as that of John and Nirenberg and is based on the following decomposition lemma, a proof of which can be found in their paper.

Lemma. Let $u(x)$ be an integrable function on the bounded cube C_0 and let s be a positive number such that

$$s \geq R_0^{-n} \int_{C_0} |u(x)| \, dx.$$

There then exists a denumerable set of open disjoint parallel subcubes I_k ($k=1, 2, \cdots$) such that

(i) $|u(x)| \leq s$ a.e. in $C_0 - \bigcup_k I_k$,
(ii) the average, u_k, over I_k satisfies $|u_k| \leq 2^n s$,

(iii) $\sum_k R_k^2 \leq s^{-1}\int_{C_k} |u(x)| \, dx$ (R_k = edge length of I_k).

Theorem. Let $u = u(x)$ be an integrable function on a bounded cube C_0. Assume there exists a nondecreasing function $K(R)$ and a constant ε, $0 < \varepsilon \leq 1$, such that for every parallel subcube C and some constant a_C the inequality

$$\int_C |u(x) - a_C| \, dx \leq K(R) R^{n+\varepsilon}$$

holds, R being the edge length of C. Then there is a function $v(x) = u(x)$ a.e. in C_0, such that

$$|v(x) - v(y)| \leq K_1 K(|x - y|) |x - y|^{\varepsilon}$$

holds for all points x, y in C_0, with K_1 depending only on ε and n.

The function $K(R)$ may tend to zero as $R \to 0$ in which case $v(x)$ is better than Hölder continuous.

Proof. If inequality (3) holds then it will also hold with $K(R)$ replaced by the constant $K(R_0)$. We call this constant K.

Since

$$\int_C |u(x)| \, dx - ac R^n \leq \int_C |u(x) - ac| \, dx,$$

it follows that u_C, the mean value of $u(x)$ over C, satisfies $|u_C - ac| \leq KR^{\varepsilon}$. Hence

$$\int_C |u(x) - u_C| \, dx \leq 2KR^{n+\varepsilon}.$$

Let $\Gamma = \Gamma(K; \varepsilon; R_0)$ be the class of all integrable functions $u(x)$ satisfying the condition (5) on some cube C_0 of edge length R_0. Let $\mu(\sigma) = \mu(\sigma; K; \varepsilon; R_0)$ be defined by

$$\mu(\sigma) = \sup_{u \in \Gamma(K; \varepsilon; R_0)} \text{meas}\{|u(x) - u_C| > \sigma\}.$$

Now multiply both sides of (5) by an arbitrary positive constant K' and set $w(x) = K'u(x)$. It is clear that w satisfies

$$\int_C |w(x) - w_C| \, dx \leq 2KK'R^{n+\varepsilon}$$

and therefore $\mu(\sigma; K; \varepsilon; R_0) = \mu(\sigma K'; KK'; \varepsilon; R_0)$. Substituting σ/K' for σ in this equation, we get
Next, perform a similarity transformation \(y = (R'/R_0)x \) which carries the cube \(C_0 \) onto a cube \(C' \) of edge length \(R' \), and set \(w(y) = u((R_0/R')y) \). \(w(y) \) satisfies

\[
\int_{C} |w(y) - w_C| \, dy \leq 2K \left(\frac{R_0}{R'} \right)^n R^{n+s}
\]

for every parallel subcube \(C \) of \(C' \) with edge length \(R \). It easily follows that

\[
\mu(\sigma; K(R_0/R')^s; \epsilon; R') = (R'/R_0)^n \mu(\sigma; K; \epsilon; R_0).
\]

Substituting \(K(R'/R_0)^s \) for \(K \) gives

\[
\mu(\sigma; K; \epsilon; R') = (\frac{R'}{R_0})^n \mu \left(\sigma; \frac{R'}{R_0} \right)^s ; \epsilon; R_0 \).
\]

Let \(\sigma \) and \(s \) be arbitrary numbers such that

\[
2^{-n} \sigma \geq s \geq R_0^{-n} \int_{C_0} |u(x)| \, dx.
\]

From the decomposition lemma we then have

\[
\text{meas}\{ |u(x)| > \sigma; x \in C_0\} \leq \sum_k \text{meas}\{ |u(x) - u_k| > \sigma - 2^ns; x \in I_k\}.
\]

If we assume, as we may, that \(u_{C_0} = 0 \), (9) then implies

\[
\mu(\sigma; K; \epsilon; R_0) \leq \sum_k \mu(\sigma - 2^ns; K; \epsilon; R_k).
\]

From (8) we then have

\[
\mu(\sigma; K; \epsilon; R_0) \leq \sum_k \left(\frac{R_k}{R_0} \right)^n \mu \left(\sigma - 2^ns; K \left(\frac{R_k}{R_0} \right)^s ; K; \epsilon; R_0 \right)
\]

and from (7) we further deduce

\[
\mu(\sigma; K; \epsilon; R_0) \leq \sum_k \left(\frac{R_k}{R_0} \right)^n \mu \left(\sigma - 2^ns; \left(\frac{R_0}{R_k} \right)^s ; K; \epsilon; R_0 \right).
\]

Statement (iii) in the decomposition lemma gives

\[
\left(\frac{R_0}{R_k} \right)^s \geq s^{1/n} M, \quad M = R_0^s \left(\int_{C_0} |u(x)| \, dx \right)^{-1/n}.
\]
Using the fact that μ is nonincreasing in σ, we then have from (10), (11) and (iii) of the decomposition lemma

\begin{equation}
\mu(\sigma) \leq s^{-1}R_{0}^{-n} \int_{c_{0}} \left| u(x) \right| dx \cdot \mu((\sigma - 2n^{s})^{s}/M).
\end{equation}

Set $\sigma = 2^{n+1}s$. Then $(\sigma - 2n^{s})^{s}/M = s/(n \cdot M/2 \cdot \sigma)$. Thus, if we set

\begin{equation}
s = \left(\frac{2^{n^{s}}}{M} \right)^{s} = 2^{n^{s}}R_{0}^{-n} \int_{c_{0}} \left| u(x) \right| dx
\end{equation}

we get

\begin{equation}
\mu(\sigma) \leq 2^{-s/n} \mu(\sigma).
\end{equation}

Therefore $\mu = 0$ for $\sigma = 2^{n^{s}+1}R_{0}^{-n} \int_{c_{0}} \left| u(x) \right| dx$, or in other words

\begin{equation}
\left| u(x) - u_{c_{0}} \right| \leq 2^{n^{s}+n+3}K(R_{0})R_{1}^{s}
\end{equation}
a.e. in C_{0}. Therefore

\begin{equation}
\left| u(x) - u(y) \right| \leq 2^{n^{s}+n+3}K(R_{0})R_{1}^{s}
\end{equation}

for almost all x and y in C_{0}. Since C_{0} is an arbitrary cube and since any two points x, y with $|x - y| = R$ can be inclosed in a parallel subcube of edge length R the desired result follows from (13).

COROLLARY. Let $u = u(x)$ have strong derivatives which are in L^{p} $1 \leq p < \infty$ on a bounded cube C_{0}. Assume there is a nondecreasing function $K(K(R))$ and a constant ϵ, $0 < \epsilon \leq 1$, such that for every parallel subcube C

\begin{equation}
\int_{C} \left| \nabla u(x) \right|^{p} dx \leq K(\epsilon)R^{n-p+\epsilon}
\end{equation}

holds, R being the edge length of C. Then there is a function $v(x) = u(x)$ a.e. in C_{0} such that

\begin{equation}
\left| v(x) - v(y) \right| \leq K_{2}K(\epsilon) \left| x - y \right|^{\epsilon}
\end{equation}

holds for all points x, y in C_{0} and K_{2} depends only on ϵ and n.

PROOF. It is a simple matter to prove the Wirtinger inequality

\begin{equation}
\int_{C} \left| u(x) - u_{c_{0}} \right| dx \leq K_{3}R \int_{C} \left| \nabla u(x) \right| dx,
\end{equation}

with K_{3} depending only on n. Applying the Hölder inequality to the right side of (16) we get
\[(17) \quad \int |u(x) - uc| \, dx \leq K_2 R^{n+1-n/\eta} \left(\int |\text{grad} \, u(x)|^p \, dx \right)^{1/p}\]

and the desired result follows from the previous theorem.

This paper has been written with the support of the Office of Naval Research, under project Nonr 710 (16), NR-043-041.

Reference

University of Minnesota

PHRAGMÉN-LINDELOF THEOREMS FOR SECOND ORDER QUASI-LINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

JOHN O. HERZOG

Phragmén-Lindelöf theorems for uniformly elliptic partial differential equations have been the subject of several papers in recent years (see e.g. [3; 4; 6; 7; 8; 10]). Here we are concerned with the Phragmén-Lindelöf theorem for second order quasi-linear elliptic equations of the form

\[(1) \quad L[u] = \sum a_{ij}(x, \rho)\partial_{x_i x_j} = f(x, z, \rho),\]

which need not be uniformly elliptic. The main result is Theorem 1 which roughly says that if \(u(x)\) is a subfunction with respect to (1) in a domain \(D\) contained in a half space and if \(u(x) \leq 0\) on the boundary of \(D\) then either \(u(x) \leq 0\) throughout \(D\) or the maximum of \(u(x)\) on a sphere of radius \(r\) is of order not less than \(r^\eta\) for some \(\eta > 0\). Probably the most interesting feature of this theorem is that its proof essentially depends only on the behavior of the functions \(a_{ij}(x, \rho)\) and \(f(x, z, \rho)\) for \(\sum \rho_i^2 \leq 1\). For \(f \equiv 0\) and dimension \(n = 2\) it is shown that \(\eta = 1\).

Let \(D\) be an unbounded domain contained in a half space of \(n\)-dimensional Euclidean space and let \(T\) be the domain in \(2n\)-dimen-

1 This paper is a portion of a doctoral thesis written under the supervision of Professor Lloyd K. Jackson at the University of Nebraska.