HOMOTOPICAL NILPOTENCE OF S^3

GERALD J. PORTER

In [1] Berstein and Ganea define the nilpotence of an H-space to be the least integer n such that the n-commutator is nullhomotopic. We prove that S^3 with the usual multiplication is 4 nilpotent.

Let X be an H-space. The 2-commutator $c_2: X \times X \rightarrow X$ is defined by $c_2(x, y) = xyx^{-1}y^{-1}$ where the multiplication and inverses are given by the H-space structure of X. The n-commutator $c_n: X^n \rightarrow X$ is defined inductively by $c_n = c_2(c_{n-1}X)$.

Let $T^n(X)$ denote the subset of X^n consisting of those n-tuples (x_1, \ldots, x_n) such that $x_i = *$ (the base point) for at least one i. It is well known that $c_n|T^n(X) \sim *$. Thus a map $\phi_n: X^n/T^n(X) \rightarrow X$ may be defined such that the homotopy class of ϕ_n depends only upon the homotopy class of c_n. Let Φ_n be the homotopy class of ϕ_n. Φ_n is the Samelson product and c_n is nullhomotopic if and only if $\Phi_n = 0$.

The usual multiplication for S^3 is that obtained by considering S^3 to be the set of unit quaternions. With this multiplication Q_∞, infinite quaternionic projective space, is a classifying space for S^3.

Let $T: \pi(\mathbb{H}S^n, X) \rightarrow \pi(S^n, OX)$ be defined by $(Tf(s))(t) = f(t, s)$, where $s \in S^n, f \in \pi(\mathbb{H}S^n, X)$, and $t \in I$. T is an isomorphism of the homotopy groups.

Samelson [3] has shown that if $j: S^1 \rightarrow Q^n$ is inclusion, $Tj: S^3 \rightarrow \Omega Q_\infty$ is an H-homomorphism which is also a homotopy equivalence. He uses this to show that $T([j, j], j) = (Tj)_* \Phi_s$ where the product on the left is the 3-fold iterated Whitehead product. Since T is an isomorphism, to show that S^3 is 4 nilpotent it suffices to show that the four-fold iterated Whitehead product of j is zero and the three-fold product is nonzero.

Let i_4 be the identity map on S^4. Hilton [2] has shown that $0 \neq [[i_4, i_4], i_4] \in \pi_{10}(S^4)$ is the image of an element in $\pi_9(S^3)$ under the suspension homomorphism. He uses this fact to prove $[[[i_4, i_4], i_4], i_4] = 0$.

Lemma 1. $[[[j, j], j], j] = 0$.

Proof. $[[[j, j], j], j] = j_*[[[i_4, i_4], i_4], i_4] = 0$.

Lemma 2. $[[j, j], j] \neq 0$.

Received by the editors May 3, 1963.
Proof. Consider the following diagram:

\[\pi_{10}(Q_\infty) \stackrel{T}{\to} \pi_9(\Omega Q_\infty) \]
\[\uparrow j_* \quad \uparrow (Tj)_* \]
\[\pi_{10}(S^4) \leftarrow \pi_9(S^3). \]

Let \(f \in \pi_9(S^3) \), \(s \in S^3 \) and \(t \in I \) then

\[(Tj_* \Sigma f(s))(t) = j_* \Sigma f(t, s) = j(\Sigma f)(t, s) = j(t, f(s)) = (Tj)_* f(s)(t). \]

Thus the above diagram commutes, i.e., \((Tj)_* = Tj_* \Sigma \). Since \(Tj \) is a homotopy equivalence \((Tj)_* \) is an isomorphism. By a remark above there is a \(g \in \pi_9(S^3) \) such that \(\Sigma g = [[[i_4, i_4], i_4]. \) We thus have \(0 \neq (Tj)_* g = Tj_* \Sigma g = T[[j, j], j]. \) Therefore \([[[j, j], j] \neq 0. \)

Theorem. \(S^3 \) with the usual multiplication is 4 homotopy nilpotent.

Corollary (to the proof). \(\Sigma \Phi_4 = [[[i_4, i_4], i_4]. \)

References

Cornell University