ON THE NEWTON POLYTOPE

ALVIN I. THALER

1. Introduction. The theory of the Newton polygon of a polynomial in one variable with coefficients in a complete non-Archimedean valued field is well known (see, for example, [1], [2], [3], [6]). In [4], Krasner states that one may construct an analogous Newton polytope for a polynomial in several variables. In this paper we explore the properties of the Newton polytope.

I am very grateful to Professor B. M. Dwork for his encouragement and advice.

2. Preliminaries. Let K be a complete field with respect to a non-Archimedean rank one valuation $x \rightarrow \text{ord } x$ with value group $\Theta \subset \mathbb{R}$, where \mathbb{R} denotes the additive group of real numbers. We shall assume that Θ is dense in \mathbb{R}. Let \mathbb{F} be the algebraic closure of K, and extend the valuation to \mathbb{F} in the natural manner. As in [2], for each real number b we define $r_b = \{ x \in \mathbb{F} : \text{ord } x = b \}$.

Definition 1. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n \in K[x]$. For any $p \in \mathbb{R}$, $v(f; p) = \text{Min}_{0 \leq i \leq n} (\text{ord } a_i + ip)$.

Remark. $v(f; p)$ is the Y-intercept of the lower line of support of the Newton polygon of f with slope $-p$.

We need the following results from the one-variable theory.

Proposition 1. Let $f(x) \in K[x]$ have a zero on Γ_r. Then for any $\lambda \in \Theta$ satisfying the inequality $\lambda \geq v(f; r)$, there exists $x \in \mathbb{F}$ such that $\text{ord } f(x) = \lambda$.

Proof. (a) If $a_0 \neq 0$ and $-r$ is the slope of the first side of the Newton polygon of f (i.e., if, for all $r' > r$, f has no zero on $\Gamma_{r'}$) then clearly $v(f; r) = \text{ord } a_0$. Therefore, we need only choose $\gamma \in \Gamma_\lambda$ such that $\text{ord } (a_0 - \gamma) = \text{ord } a_0$, for then the polynomials $f(x)$ and $f(x) - \gamma$ will have identical Newton polygons. If $\lambda > v(f; r)$, then for any $\gamma \in \Gamma_\lambda$, $\text{ord } (a_0 - \gamma) = \text{ord } a_0$; if $\lambda = v(f; r)$, we choose $\alpha, \beta \in \Gamma_0$ such that $\alpha + \beta \in \Gamma_0$ (this can be done since the residue class field of \mathbb{F} contains more than two elements), and put $\gamma = a_0(1 + a \beta^{-1})$.

(b) If either $a_0 = 0$ or $-r$ is not the slope of the first side of the Newton polygon of f, let γ be any element of Γ_λ, and consider the Newton diagram of $f(x) - \gamma$: clearly the Newton diagram of $f(x) - \gamma$ coincides with the Newton diagram of $f(x)$, with the possible excep-
tion of the points with zero abscissa. Since \(\text{ord}(a_0 - \gamma) \geq v(f; r) \), \(-r\) is the slope of a side of the Newton polygon of \(f(x) - \gamma \).

The following result is essentially identical to Lemma 1.2 of [2].

Lemma 1. Let \(f_1(x), f_2(x), \ldots, f_n(x) \) be a finite set of polynomials with coefficients in \(K \), let \(\rho \in \mathcal{R} \). Then there exists \(\xi \in \Gamma_\rho \) such that \(\text{ord} f_i(\xi) = v(f_i; \rho) \), \(i = 1, 2, \ldots, n \).

Proof. Let \(v(f_i; \rho) = M_i \), \(i = 1, 2, \ldots, n \); then \(M_i \in \mathcal{R} \). Therefore, we may choose \(\pi_i \in \Gamma_{M_i}, \pi \in \Gamma_\rho \). For each \(i \), we put \(g_i(x) = f_i(\pi x)/\pi \). Then the coefficients of \(g_i(x) \) are integral and the image of \(g_i(x) \) in the residue class field of \(\mathcal{R} \) is nontrivial. Since the residue class field is infinite there is a unit \(\xi' \) in \(\mathcal{R} \) such that \(\text{ord} g_i(\xi') = 0, i = 1, 2, \ldots, n \). If we put \(\xi = \pi \xi' \), we have the desired result.

3. **The Newton polytope.** Let \(f(x, y) = \sum a_{ij} x^i y^j \in K[x, y] \). The point set \(\{(i, j, \text{ord} a_{ij})\} \) is called the Newton diagram of \(f(x, y) \). We define the convex closure of the Newton diagram of \(f(x, y) \) with the point \((0, 0, +\infty)\) to be the Newton polytope of \(f(x, y) \).

Remark. The Newton polytope of \(f(x, y) \) is the graph of the function

\[
\Pi_f(X, Y) = \sup_{\mu, \nu \in \mathcal{R}} [v(f; \mu, \nu) - \mu X - \nu Y],
\]

where \(v(f; \mu, \nu) \) is defined in the obvious manner generalizing Definition 1: \(v(f; \mu, \nu) = \min_{i, j} (\text{ord} a_{ij} + i\mu + j\nu) \) (see [5, p. 49]).

Let \((\xi, \eta) \in \mathcal{R} \times \mathcal{R} \), suppose \((\xi, \eta) \in \Gamma_{\rho} \times \Gamma_\sigma \). The following result gives an estimate for \(\text{ord} f(\xi, \eta) \) in terms of \(\rho, \sigma \).

Proposition 2. Let \(P \) be the lower plane of support of the Newton polytope of \(f(x, y) \), with \(\partial Z/\partial X = -\rho, \partial Z/\partial Y = -\sigma \). Suppose \((\xi, \eta) \in \Gamma_{\rho} \times \Gamma_\sigma \). If only one vertex of the polytope lies on \(P \), then only one term of \(f(\xi, \eta) \) attains minimal order, and then \(\text{ord} f(\xi, \eta) = v(f; \rho, \sigma) \), the Z-axis intercept of \(P \). Otherwise, \(\text{ord} f(\xi, \eta) \geq v(f; \rho, \sigma) \).

Proof. Let the plane \(P_{ij} \) be defined by the equation \(Z + \rho X + \sigma Y = \text{ord}(a_{ij} \xi^i \eta^j) \). Then the point \((i, j, \text{ord} a_{ij}) \) in the Newton diagram of \(f(x, y) \) lies in \(P_{ij} \); but ord \((a_{ij} \xi^i \eta^j) < \text{ord}(a_{i'j'} \xi^{i'} \eta^{j'}) \) (respectively \(\text{ord}(a_{ij} \xi^i \eta^j) \leq \text{ord}(a_{i'j'} \xi^{i'} \eta^{j'}) \)) if and only if the intercept cut off on the Z-axis by the plane \(P_{ij} \) is less than (respectively less than or equal to) that cut off by \(P_{i'j'} \). Thus, \(\text{ord}(a_{i'j'} \xi^{i'} \eta^{j'}) = \min_{i, j} \text{ord}(a_{ij} \xi^i \eta^j) \) if and only if \(P_{i'j'} \) is the lower plane of support of the Newton polytope with \(\partial Z/\partial X = -\text{ord} \xi, \partial Z/\partial Y = -\text{ord} \eta \).

Corollary. If \((\xi, \eta) \) is a zero of \(f(x, y) \), then the lower plane of sup-
port P of the Newton polytope of $f(x, y)$ with $\partial Z/\partial X = -\text{ord } \xi, \partial Z/\partial Y = -\text{ord } \eta$ contains an edge of the polytope.

Remark. No distinction is made here between the plane P containing an edge or a face of the polytope.

The converse to the corollary of Proposition 2 is also valid. Thus, the Newton polytope of $f(x, y)$ gives an explicit criterion for determining the existence of a zero of $f(x, y)$ on $\Gamma_r \times \Gamma_s$. Before proceeding to the proof of the converse, we introduce the following notation.

Let $f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + \cdots + f_n(x)y^n$, $f_i(x) \in K[x]$, $i = 0, 1, 2, \ldots, n$. We shall assume that $f(x, y) \notin K[x]$, $f_n(x) \neq 0$. Let Π denote the Newton polytope of $f(x, y)$. For $\rho \in \mathcal{O}$, let Λ_ρ be the convex closure in the YZ-plane of the point set $\{(0, j, \text{ord } f_j(\xi)) : j = 0, 1, 2, \ldots, n\}$ with the point $(0, 0, +\infty)$. For $\xi \in K$, let Λ_ξ be the convex closure in the YZ-plane of the point set $\{(0, j, \text{ord } f_j(\xi)) : j = 0, 1, 2, \ldots, n\}$ with the point $(0, 0, +\infty)$. We observe that Λ_ξ is the Newton polygon of the polynomial $g_\xi(y) = \sum f_j(\xi)y^j$, and that if ord $\xi = \rho$, then no point of Λ_ρ lies below Λ_ξ. Let Π_j denote the Newton polygon of the polynomial $f_j(x)$ in the plane $Y = j$, and finally let $l_j(\rho)$ be the lower line of support of Π_j with slope $-\rho$ in the plane $Y = j$.

Proposition 3. Let $f(x, y) \in K[x, y]$, let $r, s \in \mathcal{O}$. Suppose P_r is the lower plane of support of Π, the Newton polytope of $f(x, y)$, with equation $Z + rX + sY + d = 0$. If P_r contains an edge of Π, then there is a point $(\xi, \eta) \in \Gamma_r \times \Gamma_s$ such that $f(\xi, \eta) = 0$.

Proof. Suppose P_r contains an edge of Π with direction numbers (α, β, γ). Since P_r cannot contain a vertical line, either α or β is different from zero. We may assume, with no loss of generality, that $\beta \neq 0$. Then a pair of points $p_1 = (i_1, j_1, \text{ord } a_{i_1j_1})$, $p_2 = (i_2, j_2, \text{ord } a_{i_2j_2})$ of the Newton diagram of $f(x, y)$ is on P_r, with $j_1 \neq j_2$. Since P_r is a lower plane of support of Π containing p_1 and p_2, with $\partial Z/\partial X = -r$, it follows that $l_{i_1}(r)$ and $l_{i_2}(r)$ are in P_r. By Lemma 1, we may choose $\xi \in \Gamma_r$ such that $\text{ord } f_{j_2}(\xi) = \nu(f_{j_2}, r)$, $\text{ord } f_{j_1}(\xi) = \nu(f_{j_1}, r)$. Thus, the points $q_1 = (0, j_1, \text{ord } f_{j_1}(\xi))$ and $q_2 = (0, j_2, \text{ord } f_{j_2}(\xi))$ of the Newton diagram of $g_\xi(y)$ are in P_r, and are therefore on a side of Λ_ξ which lies in P_r (since no point of Λ_ξ can lie below the intersection of P_r with the YZ-plane). But since Λ_ξ lies in the $(X = 0)$-plane, we see that the side of Λ_ξ determined by q_1, q_2 has slope $\partial Z/\partial Y = -s$; therefore, the polynomial $g_\xi(y)$ has a root $\eta \in \Gamma_s$. Hence, $(\xi, \eta) \in \Gamma_r \times \Gamma_s$ and $f(\xi, \eta) = 0$.

We summarize these results in
Theorem 1. Let \(f(x, y) \in \mathbb{K}[x, y] \), let \(r, s \in \mathbb{R} \), and let \(P_r \) be the lower plane of support of the Newton polytope of \(f(x, y) \) with \(\frac{\partial Z}{\partial X} = -r \), \(\frac{\partial Z}{\partial Y} = -s \). There is a zero \((\xi, \eta)\) of \(f(x, y) \) such that \(\text{ord } \xi = -r \), \(\text{ord } \eta = -s \), if, and only if, the plane \(P_r \) contains an edge of the polytope.

4. Distinguished values.

Definition 2. Let \(D \) be a subset of \(\mathbb{K} \times \mathbb{R} \), let \(r \) (respectively \(s \)) be a real number. We say that \(r \) is \(x \)-distinguished on \(D \) (respectively, \(s \) is \(y \)-distinguished on \(D \)) if there are infinitely many \(s \in \mathbb{R} \) (respectively, infinitely many \(r \in \mathbb{R} \)) such that \(D \cap (\Gamma_r \times \Gamma_s) \neq \emptyset \).

Proposition 4. Let \(f(x, y) \in \mathbb{K}[x, y] \), suppose \(f(x, y) \neq 0 \); let \(D = V(f) = \{(x, y) \in \mathbb{K} \times \mathbb{R} : f(x, y) = 0\} \). The set of real numbers which are \(x \)-distinguished on \(D \) (respectively, \(y \)-distinguished on \(D \)) is finite.

Proof. Let \(f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + \cdots + f_n(x)y^n \in \mathbb{K}[x] \), \(0 \leq i \leq n \). Since \(f(x, y) \neq 0 \), not all the polynomials \(\{f_i(x)\} \) are zero. Let \(\mathbb{B} \) be the subset of \(\mathbb{B} \{f_i(x) : 0 \leq i \leq n\} \) consisting of those polynomials which are nonzero, and let \(\mathbb{R} \) be the set of values of zeros of polynomials in \(\mathbb{B} \), i.e., \(r \in \mathbb{R} \) if there is a pair \((f, \xi) \in \mathbb{B} \times \Gamma_s \) such that \(f(\xi) = 0 \). Clearly \(\mathbb{R} \) is a finite set. Suppose \(r' \in \mathbb{R} \). Then for \(\xi \in \Gamma_r \), the Newton diagram of \(g_\xi(y) = f(\xi, y) \) depends only on \(\text{ord } \xi \). Therefore, as \(\xi \) runs through \(\Gamma_r \), there is only a finite number of \(s \in \mathbb{R} \) such that \(g_\xi \) has a zero on \(\Gamma_s \). Therefore if \(r' \in \mathbb{R} \), \(r' \) is not \(x \)-distinguished on \(D \).

The set of real numbers which are distinguished for a given polynomial is determined by the Newton polytope of that polynomial. In fact, we shall prove

Theorem 2. Let \(f(x, y) \in \mathbb{K}[x, y] \), suppose \(f(0, 0) \neq 0 \). Then \(\rho \) is \(x \)-distinguished on \(V(f) \) if, and only if, there is an edge of the Newton polytope of \(f(x, y) \) with direction numbers \((1, 0, -\rho)\).

The proof of Theorem 2 will be a trivial consequence of Propositions 5 and 6.

Lemma 2. Let \(f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + \cdots + f_n(x)y^n \in \mathbb{K}[x, y] \), suppose \(f(x, y) \in \mathbb{K}[x] \), \(f(0, 0) \neq 0 \). Let \(\rho \in \mathbb{R} \), and let \(\Lambda_s, \Pi_i, 0 \leq j \leq n \), be as previously defined. If the point \((0, j_0, v(f_{j_0}; \rho))\) is on \(\Lambda_s \), then there is a vertex \((i_0, j_0, \text{ord } a_{i_0j_0}) \) of \(\Pi_{j_0} \) which is on the Newton polytope of \(f(x, y) \).

Proof. Suppose the point \((0, j_0, v(f_{j_0}; \rho))\) is on the side of \(\Lambda_s \) with vertices \((0, j_1, v(f_{j_1}; \rho)), (0, j_2, v(f_{j_2}; \rho)) \), and suppose \(j_1 < j_2 \). Let \(P \) be the plane determined by the (parallel) lines \(l_{j_1}(\rho) \) and \(l_{j_2}(\rho) \). Then certainly \(l_{j_2}(\rho) \) lies in \(P \). It remains only to be shown that \(P \) is a
lower plane of support of the polytope. Suppose not; then there is a point \((i', j', \text{ord} a_{i'j'})\) below \(P\). Hence \((0, j', v(f_{j'; \rho}))\) lies below the line \(P \cap (X = 0)\). This contradicts convexity of \(\Lambda_\rho\) in the \(YZ\)-plane.

Corollary. Using the above notation, if \((0, j_0, v(f_{j_0}; \rho))\) is on \(\Lambda_\rho\), and if \(\text{ord} f_\xi(\xi)\) has more than one value for \(\xi \in \Gamma_\rho\), then a side of \(\Pi_{j_0}\) is on the polytope of \(f(x, y)\).

Proposition 5. If \(\rho \in \Theta\) is \(x\)-distinguished on \(V(f)\), then there is an edge of the Newton polytope of \(f(x, y)\) with direction numbers \((1, 0, -\rho)\).

Proof. For \(\xi \in \Gamma_\rho\), we let \(g_\xi(y)\), \(\Lambda_\xi\), \(\Lambda_\rho\) be defined as before. Since \(\rho\) is \(x\)-distinguished on \(V(f)\), the set of slopes of sides of the polygons \(\{\Lambda_\xi: \xi \in \Gamma_\rho\}\) is infinite. Consider the set of non-negative integers \(j\) with the property that \((0, j, v(f_j; \rho))\) is a vertex of \(\Lambda_\rho\) and \(\{\text{ord} f_\xi(\xi): \xi \in \Gamma_\rho\}\) has more than one element. If this set were empty, it would follow that \(\Lambda_\rho = \Lambda_\xi\) for each \(\xi \in \Gamma_\rho\), contradicting the hypothesis. Let \(j_0\) denote the smallest integer of this set.

By the previous corollary, \(l_{j_0}(\rho)\) contains a side of \(\Pi_{j_0}\) and this side is on \(\Pi\). To complete the proof of Proposition 5, we need only show that this side of \(\Pi_{j_0}\) is indeed an edge of the polytope. If \(j_0\) is either 0 or \(n\), this is certainly the case. Otherwise, we may choose integers \(j_1, j_2\) such that \((0, j_1, v(f_{j_1}; \rho))\), \((0, j_0, v(f_{j_0}; \rho))\), and \((0, j_2, v(f_{j_2}; \rho))\) are distinct adjacent vertices of \(\Lambda_\rho\), with \(0 \leq j_1 < j_0 < j_2 \leq n\). Let \(P_1\) be the plane determined by the lines \(l_{j_0}(\rho), l_{j_1}(\rho)\), and let \(P_2\) be the plane determined by the lines \(l_{j_0}(\rho), l_{j_2}(\rho)\). By the concluding argument of Lemma 2, \(P_1\) and \(P_2\) are lower planes of support of the Newton polytope of \(f(x, y)\). By choice of \(j_1\) and \(j_2\), they are distinct, and their intersection is the line \(l_{j_0}(\rho)\). This completes the proof.

Proposition 6. If there is an edge of the Newton polytope of \(f(x, y)\) with direction numbers \((1, 0, -\rho)\), then \(\rho \in \Theta\) and \(\rho\) is \(x\)-distinguished on \(V(f)\).

Note. It is not necessary to assume here that \(\rho \in \Theta\).

Proof. We again write \(f(x, y) = \sum_{j=0}^n f_j(x)y^j\); what we are required to show is that, if there is a polynomial \(f_\xi(x)\) such that \(f_\xi(x)\) has a zero on \(\Gamma_\rho\) and, moreover, that the side of \(\Pi_\xi\) of slope \(-\rho\) is an edge of the Newton polytope \(\Pi\) of \(f(x, y)\), then \(\rho\) is \(x\)-distinguished on \(V(f)\). That is, we must show that the set \(\xi_\rho = \{\lambda: -\lambda\) is the slope of a side of \(\Lambda_\xi\), for some \(\xi \in \Gamma_\rho\}\) is infinite. (We observe that \(\rho \in \Theta\), from the one-variable Newton polygon theory applied to \(f_\xi(x)\).)

Case 1. For some \(k, 1 \leq k \leq n, f_k\) has no zeros on \(\Gamma_\rho\). Let \(k_0\) be the smallest such \(k\). Then either \(k_0 = 0\) or \(k_0 > 0\).
(1a) Suppose \(k_0 = 0 \). Let \(i_0 \) be the smallest integer with the property that a side of \(\Pi_{i_0} \) of slope \(-\rho\) is an edge of \(\Pi \). Then \((0, i_0, v(f_{i_0}; \rho))\) is a vertex of \(\Lambda_\rho \). Moreover, \(i_0 > 0 \), since \(f_0 \) has no zeros on \(\Gamma_\rho \).

Let the vertices of \(\Lambda_\rho \) in the \(YZ \)-plane have \(Y \)-coordinates \(0 = \alpha_0 < \alpha_1 < \cdots < \alpha_i \), let \(i_0 = \alpha_0 \). Then for all \(\xi \in \Gamma_\rho \), the polygons \(\Lambda_i \) and \(\Lambda_\rho \) agree in vertices whose \(Y \)-coordinates are \(\alpha_0, \alpha_1, \cdots, \alpha_{i-1} \).

Consider the set \(\mathcal{B} \) of \(Z \)-coordinates of points on the line \(\overline{EG} \) in Figure 1 which are also in \(\mathcal{S} \). Since \(\mathcal{S} \) is dense in \(R \), the set \(\mathcal{B} \) is infinite. But \(E \) has coordinates \((i_0, v(f_{i_0}; \rho))\), whence from Proposition 1, we may choose, for each \(r \in \mathcal{B} \), an element \(\xi \in \Gamma_\rho \) such that \(\text{ord} \, f_{i_0}(\xi) = r \). Let \(\mathcal{Z} \) be a set of representatives of \(\mathcal{B} \) in \(\Gamma_\rho \): if \(\xi \in \mathcal{Z} \) then \(\text{ord} \, f_{i_0}(\xi) \in \mathcal{B} \), and \(\xi, \xi' \in \mathcal{Z} \), \(\xi \neq \xi' \) implies \(\text{ord} \, f_{i_0}(\xi) \neq \text{ord} \, f_{i_0}(\xi') \). The definition of \(\mathcal{B} \) guarantees that \((\alpha_0, \text{ord} \, f_{i_0}(\xi))\) is a vertex of \(\Lambda_i \) for any \(\xi \in \mathcal{Z} \).

For \(\alpha_{i-1} \leq \nu \leq \alpha_i - 1 \), we define the sets \(\mathcal{E}_\nu^{(1)} = \{ \xi \in \mathcal{Z}: (\nu, \text{ord} \, f_{i_0}(\xi)), (i_0, \text{ord} \, f_{i_0}(\xi)) \} \) are vertices of a side of \(\Lambda_i \). Then, since \(\mathcal{Z} = \bigcup_{\alpha_{i-1} < \nu < \alpha_i} \mathcal{E}_\nu^{(1)} \), we may choose \(\nu_1 \) to be the largest integer with the property that \(\nu_1 < i_0 \) and \(\mathcal{E}_{\nu_1}^{(1)} \) is an infinite set. Let \(\mathcal{X}_1 = \{ \text{ord} \, f_{i_0}(\xi), \xi \in \mathcal{E}_{\nu_1}^{(1)} \}. \) If \(\mathcal{X}_1 \) is finite, then the set \{ \text{ord} \, f_{i_0}(\xi) - \text{ord} \, f_{i_0}(\xi), \xi \in \mathcal{E}_{\nu_1}^{(1)} \} \) is infinite, whence so is \(\mathcal{B} \). Otherwise we define, for \(\alpha_{i-1} < \nu < \nu_1 \), the sets \(\mathcal{E}_{\nu}^{(2)} = \{ \xi \in \mathcal{E}_{\nu_1}^{(1)}: (\nu, \text{ord} \, f_{i_0}(\xi)), (\nu_1, \text{ord} \, f_{i_0}(\xi)) \} \) are vertices of a side of \(\Lambda_i \}, \) and choose \(\nu_2 \) to be the largest integer with the property that \(\nu_2 < \nu_1 \) and \(\mathcal{E}_{\nu_2}^{(2)} \) is an infinite set. We then define \(\mathcal{X}_2 = \{ \text{ord} \, f_{i_0}(\xi), \xi \in \mathcal{E}_{\nu_2}^{(2)} \}. \) Proceeding in this manner, we define a sequence of integers \(\nu_1 > \nu_2 > \cdots > \nu_m \geq \alpha_{i-1} \), and a corresponding sequence of sets \(\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_m \). If \(\mathcal{X}_i \) is finite for some \(i \), then (1a) is proved. Otherwise, we may assume that \(m \) is such that \(\nu_m = \alpha_{i-1} \); but then, \(\mathcal{X}_m = \{ \text{ord} \, f_{i_0, \nu_m}(\xi), \xi \in \mathcal{E}_{\nu_m}^{(m)} \} = \{ v(f_{\alpha_{i-1}}; \rho) \} \), which is certainly finite. Thus, case (1a) is proved.

\[\text{If } \alpha_1 = m, \text{ let } \mathcal{B} = \{ \lambda \in \mathcal{S}: \text{ord} \lambda \geq v(f_m; \rho) \}. \]
(1b) Suppose $k_0 > 0$. Then f_ρ has a zero on Γ_ρ. Hence, by Proposition 1, we may choose a sequence $\{\xi_h\} \subset \Gamma_\rho$ such that $\text{ord}_h f_\rho(\xi_h) \to \infty$ as $h \to \infty$. If ρ is not x-distinguished on $V(f)$, we must then have $\text{ord}_h f_\rho(\xi_h) \to \infty$ as $h \to \infty$, \cdots, $\text{ord}_h f_{k_0-1}(\xi_h) \to \infty$ as $h \to \infty$. But then, for h sufficiently large, the point $(k_0, \text{ord}_h f_{k_0}(\xi_h)) = (k_0, \nu(f_{k_0}; \rho))$ is on Λ_{k_0}.

For $0 \leq \nu < k_0$, we let $\mathcal{E}_\nu = \{h \in \mathbb{Z}: (\nu, \text{ord}_h f_\rho(\xi_h)), (k_0, \text{ord}_h f_{k_0}(\xi_h)) \text{ are vertices of a side of } \Lambda_{k_0}\}$. Then for some ν_0, the set \mathcal{E}_{ν_0} is infinite, whence the set of slopes

$$\left\{\frac{\nu(f_{k_0}; \rho) - \text{ord}_h f_{\nu_0}(\xi_h)}{k_0 - \nu_0} : \nu \in \mathcal{E}_{\nu_0}\right\}$$

is infinite, whence ρ is x-distinguished on $V(f)$.

Case 2. $f_j(x)$ has a zero on Γ_ρ for each j, $0 \leq j \leq n$. If there is an $\eta \in \Gamma_\rho$ such that $f_j(\eta) = 0$ for each j, $0 \leq j \leq n$, then certainly ρ is x-distinguished on $V(f)$. Therefore, we may assume that no root of one of the f_j is a root of all the f_j.

Let f_0 have the zeros $\eta_1, \eta_2, \cdots, \eta_w$ on Γ_ρ. Let j_0 be the smallest integer with the property that, for some i_0, $1 \leq i_0 \leq w$, $f_{j_0}(\eta_{i_0}) \neq 0$. Choose a neighborhood N of η_i in \mathbb{R} such that $\{\text{ord}_h f_{i}(\xi) : \xi \in N\}$ is bounded. Since the valuation of \mathbb{R} is dense, we may choose a sequence $\{\xi_h\} \subset N$ such that $\text{ord}_h f_{j_0}(\xi_h) \to \infty$, $h \to \infty$, for $k = 0, 1, 2, \cdots, j_0 - 1$. But $\{\text{ord}_h f_{j_0}(\xi_h): h = 1, 2, \cdots\}$ is bounded; therefore, for h sufficiently large, the point $(j_0, \text{ord}_h f_{j_0}(\xi_h))$ is on Λ_{k_0}.

For $0 \leq \nu < j_0$, let $\mathcal{E}_\nu = \{h \in \mathbb{Z}: (\nu, \text{ord}_h f_{j_0}(\xi_h)), (j_0, \text{ord}_h f_{j_0}(\xi_h)) \text{ are vertices of a side of } \Lambda_{k_0}\}$. Then for some ν_0, \mathcal{E}_{ν_0} is infinite; therefore, the set of slopes

$$\left\{\frac{\text{ord}_h f_{j_0}(\xi_h) - \text{ord}_h f_{\nu_0}(\xi_h)}{j_0 - \nu_0} : \nu \in \mathcal{E}_{\nu_0}\right\}$$

is infinite, whence ρ is x-distinguished on $V(f)$.

References

Johns Hopkins University