CONCERNING CONTINUOUS IMAGES OF
COMPACT ORDERED SPACES

L. B. TREYBIG

It is the purpose of this paper to prove that if each of X and Y
is a compact Hausdorff space containing infinitely many points, and
$X \times Y$ is the continuous image of a compact ordered space L, then
both X and Y are metrizable. The preceding theorem is a generaliza-
tion of a theorem [1] by Mardešić and Papić, who assume that X, Y,
and L are also connected. Young, in [3], shows that the Cartesian
product of a "long" interval and a real interval is not the continuous
image of any compact ordered space.

In this paper, the word compact is used in the "finite cover" sense.
The phrase "ordered space" means a totally ordered topological space
with the order topology. A subset M of a topological space is said
to be herditarily separable provided each subset of M is separable.
If a and b are points of an ordered space L and $a < b$, then $[a, b]$
will denote the set of all points x of L such that $a \leq x \leq b$
($a < x < b$), provided there is one; also, $[a, b]$ will be used even in the
case where $a = b$. A subset M of an ordered space L is convex provided
that if $a \in M$, $b \in M$, and $a < b$, then $[a, b] \subseteq M$. If M is a subset
of an ordered space L, then $G(M)$ will denote the set of all ordered pairs
(a, b) such that (1) $a \in M$, $b \in M$, and $a < b$, and (2) $\{a, b\} = M \setminus [a, b]$,
provided there is one.

Lemma 0. If M is a compact subset of the ordered space L, then the
relative topology of L on M is the same as the order topology on M.

Presented to the Society, May 4, 1962; received by the editors January 12, 1963
and, in revised form, July 3, 1963.

The author wishes to express his appreciation to the National Science Founda-
tion for financial support.

The referee has informed the author that the theorem of this paper was proved
Lemma 1. If M is a nondegenerate, totally disconnected, compact subset of an ordered space L, then M is metrizable if and only if $G(M)$ is countable.

Proof. Suppose M is metrizable. Since a compact Hausdorff space is metric if and only if it satisfies the second axiom of countability, there is a countable sequence I_1, I_2, \cdots such that (1) for each n, I_n is a convex open subset of L, and (2) $I_1 \cdot M, I_2 \cdot M, \cdots$ is a countable basis for M. There exists a transformation T from $G(M)$ into the ordered pairs of positive integers such that if $(a, b) \in G(M)$ and $T((a, b)) = (p, q)$, then $I_p \cdot \{a, b\} = a$ and $I_q \cdot \{a, b\} = b$. T is easily seen to be a one-to-one transformation, so $G(M)$ is evidently countable.

Suppose $G(M)$ is countable. Let the elements of $G(M)$ be labeled $(a_1, b_1), (a_2, b_2), \cdots$. Let H denote a collection such that if $h \in H$ if and only if (1) there is a positive integer i such that h is the set of all points of M which precede b_i, or h is the set of all points of M which follow a_i; or (2) there exist integers i and j such that $h = M \cdot [b_i, a_j]$. H is a countable basis for M, so M is metrizable.

Lemma 2. If M is a separable subset of the ordered space L, then M is hereditarily separable.

Proof. Suppose H is a subset of M. There is a countable set P_1, P_2, \cdots dense in M such that if $P \in M$, then for some integer pair (i, j), $P_i \leq P \leq P_j$. For each integer pair (i, j) such that $P_i \leq P_j$ and $[P_i, P_j] \cdot H$ exists, let H_{ij} denote a countable subset of $[P_i, P_j] \cdot H$ such that if $P \in [P_i, P_j]$, then there exists R in H_{ij} and S in H_{ij} such that $R \leq P \leq S$. $\sum H_{ij}$ is easily seen to be a countable set dense in H.

Lemma 3. If M is a nonconnected, separable, compact subset of the ordered space L, then M is metrizable if and only if $G(M)$ is countable.

Lemma 4. If the continuous function f_1 maps the compact ordered space K_1 onto the Hausdorff space S, then there is a compact ordered space K_2 and a continuous function f_2 mapping K_2 onto S such that (1) if K is a closed proper subset of K_2, then $f_2(K) \neq S$, and (2) if x and y are elements of K_2 such that $f_2(x) = f_2(y)$, there is an element z of K_2 between x and y such that $f_2(z) \neq f_2(x)$.

Proof. Let H denote the set of closed subsets m of K such that $f_1(m) = S$. Define a partial order \leq on H by saying $m_1 \leq m_2$ if and only if $m_1 \subseteq m_2$. It is easily verified that each chain has a lower bound, so Zorn's lemma applies here, and H has a minimal element K.
For each point x of K let K_x denote the union of all the subsets k of K such that (1) $x \in k$, (2) k is convex relative to K, and (3) if $y \in k$, then $f_1(y) = f_1(x)$. Each K_x is closed, and if x and y are elements of K, then either $K_x = K_y$ or $K_x \subset K - K_y$. Let K_2 denote the set of all K_x for $x \in K$, and suppose U is open in K_2 if and only if U^* is open in K.

Suppose that K_2 is given the natural order induced by the order on K, and that f_2, which maps K_2 onto S, is defined by $f_2(K_x) = f_1(x)$. The space K_2 and the function f_2 satisfy the conclusion of the lemma.

Lemma 5. If the continuous function f maps the compact metric space R onto the Hausdorff space S, then S is metrizable.

Proof for the case where S is nondegenerate. Let R_1, R_2, \ldots denote a countable basis for R. Let T denote a collection such that $U \in T$ if and only if there exists two points s_1 and s_2 of S and a finite integer sequence j_1, j_2, \ldots, j_n such that $f^{-1}(s_1) \subset \sum R_{i,1}, f^{-1}(s_2) \subset R - \sum R_{i,2}$, and $U = S - f(R - \sum R_{i,2})$. The collection T is a countable basis for the compact Hausdorff space S, so S is metrizable.

Lemma 6. If the continuous function f maps the compact ordered space K onto the infinite, compact Hausdorff space S, then there exists a sequence x_0, x_1, \cdots of distinct elements of S such that x_1, x_2, \cdots converges to x_0.

Proof. Let y_1, y_2, \cdots denote a sequence of distinct elements of S, and for each n, let z_n denote an element of $f^{-1}(y_n)$. There is an increasing sequence of integers n_1, n_2, \cdots such that z_{n_1}, z_{n_2}, \cdots is monotone, and since K is compact, there is a point z such that the latter sequence converges to z. There is a subsequence j_1, j_2, \cdots of n_1, n_2, \cdots such that $f(z_{j_1}) \neq f(z), i = 1, 2, \cdots$. The sequence x_0, x_1, \cdots defined by $x_0 = f(z)$ and $x_i = f(z_{j_i}), i \geq 1$, satisfies the conclusion of the lemma.

Proof of Theorem. Suppose that X is not metrizable. Let u denote an element of X, and let g map L continuously onto $X \times Y$. Since $\{u\} \times Y$ is the continuous image of a compact ordered space, an application of Lemma 6 yields an infinite sequence of distinct points $(u, b), (u, b_1), (u, b_2), \cdots$, all lying in $\{u\} \times Y$, such that $(u, b_1), (u, b_2), \cdots$ converges to (u, b). The space $Z = \{b, b_1, b_2, \cdots\}$ with the relative topology of Y is an infinite compact Hausdorff space, and the space $X \times Z$ is the continuous image of a compact ordered space, so there exists a compact ordered space K and a continuous function f mapping K onto $X \times Z$ such that the conclusions of Lemma 4 hold.

* If U is a collection of point sets, then U^* denotes the sum of the sets of the collection U.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For each positive integer \(n \), let \(H_n \) denote a partition of \(X \times Z \) into the following \(n + 1 \) open and closed sets: \(X \times \{ b_1 \}, X \times \{ b_2 \}, \ldots, X \times \{ b_n \}, X \times \{ b, b_{n+1}, b_{n+2}, \ldots \} \). For each \(n \), let \(K_n \) denote the set of all \(f^{-1}(h) \) for \(h \in H_n \), and let \(I_n \) denote a partition of \(K \) into convex open and closed sets such that if \(I \in I_n \), there is an element \(k \) of \(K_n \) such that \(I \subseteq k \). Since \(K \) is compact, each \(I_n \) is a finite collection. Let \(C \) denote a point set to which a point \(P \) belongs if and only if there is an integer \(n \) and an element \(I \) of \(I_n \) which intersects \(f^{-1}(X \times \{ b \}) \) such that \(P \) is either the right-most point of this intersection or the left-most. \(C \) is a countable set which will be shown to be dense in \(f^{-1}(X \times \{ b \}) \).

Suppose the set \(f^{-1}(X \times \{ b \}) \) contains an open set \(U \). Let \(P \) denote an arbitrary point of \(f^{-1}(X \times \{ b \}) \) and suppose \(f(P) = (x, b) \). For each \(n \) let \(Q_n \) denote an element of \(f^{-1}(x, b_n) \). Some subsequence of the \(Q_i \)'s converges to a point \(Q \) in \(K - U \), and the continuity of \(f \) implies that \(f(Q) = (x, b) \). Therefore, \(f(K - U) = X \times Z \), which is a contradiction. Now suppose that \(P \in f^{-1}(X \times \{ b \}) \) and \(R < P < S \). There is a positive integer \(n \) and a point \(Q \) of \(f^{-1}(X \times \{ b_n \}) \) in \((R, S) \). Suppose \(P < Q < S \). There is an element \(I \) of \(I_n \) containing \(P \), but not \(Q \), and the right-most point \(T \) of \(I \)-\(f^{-1}(X \times \{ b \}) \) is an element of \(C \) satisfying \(P = T < S \). This case clearly shows why \(C \) is dense in \(f^{-1}(X \times \{ b \}) \).

The separability of \(f^{-1}(X \times \{ b \}) \) implies that \(X \times \{ b \} \) is separable, and consequently, that \(X \times Z \) is separable. Let \(\{ R_1, R_2, \ldots \} \) denote a countable set dense in \(X \times Z \), and for each \(n \) let \(P_n \) denote an element of \(f^{-1}(R_n) \). The set \(K' = \text{cl}(\bigcup P_n) \) is a closed subset of \(K \) such that \(f(K') = X \times Z \), so \(K' - K \) and \(K \) is separable.

It will now be shown that \(X \times Z \) satisfies the first axiom of countability.\(^4\) Let \(P \) denote an arbitrary point of \(X \times Z \). Since \(f^{-1}(P) \) is compact and \(K - f^{-1}(P) \) is separable, it follows by an easy argument that there is a countable set \(\{ Q_1, Q_2, \ldots \} \) dense in \(K - f^{-1}(P) \) such that if \(x \in f^{-1}(P) \) and \(y \in K - f^{-1}(P) \), there is a \(Q_i \) such that \(x < Q_i \leq y \) or \(y \leq Q_i < x \). For each positive integer \(n \), let \(V_n \) denote a collection to which \(v \) belongs if and only if there is a point \(z \) of \(f^{-1}(P) \) such that \(v \) is the maximal convex subset of \(K \) which contains \(z \) and does not intersect \(\bigcup Q_i \). Since, for each \(n \), \(V_n \) is an open subset of \(K \) containing \(f^{-1}(P) \), it follows that the set \(T_n = X \times Z - f(K - V_n) \) is an open subset of \(X \times Z \) containing \(P \). Suppose \(Q \) is an arbitrary point of \(X \times Z \) distinct from \(P \), that \(z \in f^{-1}(Q) \), and also, for example, that \(z_1 \) is the last point of \(f^{-1}(P) \) which precedes \(z \) and \(z_2 \) is the first point of \(f^{-1}(P) \) which follows \(z \). There exist an integer \(j_1 \) and an integer \(j_2 \).

\(^4\) It also may be shown from \([2]\) that \(X \times Z \) satisfies the first axiom of countability.
such that \(z_1 < q_1 < z \leq q_2 < z_2 \). The set \(V_j \), where \(j = \max(j_1, j_2) \), does not contain \(z \), so the set \(T_j \) does not contain \(Q \). Therefore, \(T_1, T_2, \ldots \) is a countable sequence of open sets having only \(P \) in common.

The set \(f^{-1}(X \times \{b_1\}) \) is not metrizable, since that would imply that \(X \) is metrizable. Since Lemma 2 implies that \(f^{-1}(X \times \{b_1\}) \) is separable, Lemma 3 implies that \(G_1 = G(f^{-1}(X \times \{b_1\})) \) is uncountable. There does not exist an uncountable subcollection \(U_1 \) of \(G_1 \) such that if \((x, y) \in U_1\), then \(f(x) = f(y) \); for if there does, the conditions on \(f \) imply that for \((x, y) \in U_1\), there is a \(P \) such that \(x < P < y \), which is a contradiction. Suppose there is an uncountable subcollection \(U_2 \) of \(G_1 \) and a point \(x \) of \(X \) such that if \((z, w) \in U_2\), then \(f(z) = (x, b_1) \) or \(f(w) = (x, b_1) \). There is an uncountable subcollection \(U_3 \) of \(U_2 \) such that if \((z, w) \in U_3\) and \(f(z) = (x, b_1) \), then \(f(w) \neq (x, b_1) \). The fact that \(X \times Z \) has a countable basis at \((x, b_1)\) implies that there is an open set \(U \) containing \((x, b_1)\) and an uncountable subcollection \(U_4 \) of \(U_3 \) such that if \((z, w) \in U_4\) and \(f(z) \in U \), then \(f(w) \in (X \times Z) - U \). There is a point \(t \) of \(K \) such that each open set containing \(t \) contains uncountably many elements \((z, w)\) of \(U_4 \). The continuity of \(f \) would imply that \(f(t) = (x, b_1) \) and that \(f(t) \in (X \times Z) - U \), which is a contradiction.

Let \(C \) denote the collection of all subsets \(M \) of \(G_1 \) such that if \((p, q)\) and \((p', q')\) are elements of \(M \) then \(f(p), f(q), f(p'), \) and \(f(q') \) are four distinct points. \(C \) is partially ordered by inclusion, and each chain has an upper bound, so Zorn's lemma implies the existence of a maximal element \(W \). Suppose \(W \) is countable. Let \(D \) denote the set of all elements \((p, q)\) of \(G_1 \) such that there is an element \((p', q')\) of \(W \) such that \(f(p) = f(p') \) or \(f(q') \), or \(f(q) = f(p') \) or \(f(q') \). \(D \) is countable, so there is an element \((p, q)\) of \(G_1 - D \) such that \(f(p) \neq f(q) \). However, \(W + \{(p, q)\} \) is an element of \(C \) containing \(W \), so \(W \) is not maximal. This is a contradiction, so \(W \) is uncountable.

It will now be shown that if \(x_1 \) and \(x_2 \) are points in \(X \), then there is a positive integer \(N \) such that if \(n > N \), \(x_1 \in f^{-1}(x_1, b_n) \), and \(x_2 \in f^{-1}(x_2, b_n) \), then there is a point of \(K \) between \(x_1 \) and \(x_2 \). On the contrary, suppose there exist points \(x_1 \) and \(x_2 \) of \(X \) and an increasing sequence of integers \(n_1, n_2, \ldots \) such that for each \(i \) there exist points \(z_i \) and \(w_i \) of \(f^{-1}(x_1, b_{n_i}) \) and \(f^{-1}(x_2, b_{n_i}) \), respectively, such that no point of \(K \) lies between \(z_i \) and \(w_i \). There is a point \(z \) of \(K \) such that each open set about \(z \) contains, for infinitely many integers \(i \), both \(z_i \) and \(w_i \). But the continuity of \(f \) would imply that \(f(z) = (x_1, b) \) and also that \(f(z) = (x_2, b) \), which is a contradiction.

Let \(V \) denote the set of all ordered pairs \((x, y)\) such that there is an element \((z, w)\) of \(W \) such that \(f(z) = (x, b_1) \) and \(f(w) = (y, b_1) \). There is a positive integer \(N \) and an uncountable subcollection \(V_1 \) of \(V \) such that if \((x, y) \in V_1\), \(z \in f^{-1}(x, b_N) \), and \(w \in f^{-1}(y, b_N) \), then there
is some point of K between z and w. Let T_1 denote a set to which t belongs if and only if there exist integers i and j such that t is maximal with respect to the property of being a convex subset of K which contains neither P_i nor P_j. Let T_2 denote a collection to which t belongs if and only if $t \in T_1$ or t is the union of a finite number of elements of T_1. The collection T_2 is countable and has the property that if $(x, y) \in V_1$ then there exist elements t_1 and t_2 of T_2 such that $f^{-1}(x, b_n) \subset t_1 \subset f^{-1}(y, b_n)$ and $f^{-1}(y, b_n) \subset t_2 \subset f^{-1}(x, b_n)$. This is easily seen, because for each z in $f^{-1}(x, b_n)$, for example, there is an element t_z of T_1 which contains z and does not intersect $f^{-1}(y, b_n)$, and $f^{-1}(x, b_n)$ is covered by a finite number of the t_z's.

Let S_1 denote a collection to which an element s belongs if and only if there is an element t of T_2 such that $(s \times \{b_n\}) = X \times \{b_n\} - f(K - t) \cdot (X \times \{b_n\})$. S_1 is a countable collection of open subsets of X such that if $(x, y) \in V_1$, there exist elements s_1 and s_2 of S_1 such that $x \in s_1 \subset X - \{y\}$ and $y \in s_2 \subset X - \{x\}$. Since S_1 is countable and V_1 is uncountable, there is an element s of S_1 and an uncountable subcollection V_2 of V_1 such that if $(x, y) \in V_2$, then $x \in s \subset X - \{y\}$. Since f is continuous and $s \times \{b_1\}$ is open in $X \times Z$, it follows that $f^{-1}(s \times \{b_1\})$ is open in K.

Let W_1 denote the collection of all elements (c, d) of W such that there is an element (x, y) of V_2 such that $(f(c); f(d)) = (x, b_1; y, b_1)$. If $(c, d) \in W_1$, $c \in f^{-1}(s \times \{b_1\})$ and $d \in K - f^{-1}(s \times \{b_1\})$. For each pair (c, d) of W_1 let $U(c)$ denote a convex open subset of K such that $c \in U(c)$ and $U(c) \subset f^{-1}(s \times \{b_1\})$. The set of all $U(c)$'s is uncountable and no two of them intersect, so K is not separable. This yields a contradiction, so X is metrizable.

One interesting application of the preceding theorem is the following

Theorem. If a space X is the continuous image of a compact ordered space and can be expressed as an infinite product $(\prod X_i)$, where each X_i is a nondegenerate compact Hausdorff space, then (1) the product is a countable product, and (2) each X_i is metrizable.

References

Tulane University