A NOTE ON VARIATIONAL METHODS

J. T. POOLE

In this note a new development of the variational method due to G. M. Golusin will be given. The Golusin variational method, found in Geometrische Funktionentheorie [1, pp. 96–105], is established there only after rather lengthy and tedious considerations. Below, the interior variational formula of M. M. Schiffer [2] is used and the Golusin variation is quickly and easily obtained.

The Schiffer variation as used herein may be stated as follows. If

\[z^* = z + \varepsilon k(z) \]

(\(\varepsilon \) small) maps the boundary \(C \) of the simply-connected domain \(D \) schlicht onto the boundary \(C^* \) of the simply-connected domain \(D^* \), then the variation \(\delta g(\zeta, \eta) = g^*(\zeta, \eta) - g(\zeta, \eta) \) of the Green's function is given by the formula

\[\delta g(\zeta, \eta) = \operatorname{Re} \left\{ \frac{1}{2\pi i} \int_C p'(z, \eta) p'(z, \zeta) \varepsilon k(z) dz \right\} + O(\varepsilon^2), \]

where \(p(z, \eta) \) is the analytic completion of the Green's function \(g(z, \eta) \) of \(D \) and \(\Gamma \) is a curve in \(D \) homotopic to \(C \) and such that the domain \(\Delta \) bounded by \(\Gamma \) is contained in \(D^* \).

Theorem (Golusin). Let \(z = f(w) \), regular and schlicht in \(|w| < 1 \), map \(|w| < 1 \) onto a domain \(D \) containing \(z = 0 \) in such a way that \(f(0) = 0 \). Let \(z^* = F(w, \varepsilon) \) be regular as a function of \(w \) and \(\varepsilon \) for \(r \leq |w| < 1 \) and \(|\varepsilon| < \varepsilon_0 \); and for each \(\varepsilon > 0 \), \(0 < \varepsilon < \varepsilon_0 \), let \(z^* = F(w, \varepsilon) \) be schlicht in \(r \leq |w| < 1 \). Furthermore, suppose that for all \(w \) in \(r \leq |w| < 1 \) and small \(\varepsilon \) we have

\[F(w, \varepsilon) = f(w) + \varepsilon q(w) + O(\varepsilon^2). \]

Denote by \(D^* \) the simply-connected domain obtained by taking the union of the image of \(r \leq |w| < 1 \) (under \(z^* = F(w, \varepsilon) \)) and the domain bounded by the image of \(|w| = r \) (under \(z^* = F(w, \varepsilon) \)). Then for one of the func-

Received by the editors June 13, 1963.

1 This research was supported by the National Science Foundation, under research grant NSF-G 11592 with the University of Maryland. The author wishes to express his gratitude to Professor J. A. Hummel, who has directed the program of study which is represented in part by this note.
tions \(z^* = f^*(w) \), \(f^*(0) = 0 \), which maps \(|w| < 1 \) schlicht onto \(D^* \), we have in \(|w| < 1 \):

\[
(3) \quad f^*(w) = f(w) + \epsilon q(w) - \epsilon wf'(w)S(w) + \epsilon wf'(w)S\left(\frac{1}{w}\right) + O(\epsilon^2),
\]

where \(S(w) \) is the sum of terms involving negative powers of \(w \) in the Laurent expansion of \(q(w)/wf'(w) \) in the ring \(r < |w| < 1 \).

Proof. Let \(w = \phi(z) \) be the inverse of \(z = f(w) \). Let \(\omega \in \{w: |w| < 1\} \) be arbitrary and let \(\xi = f(\omega) \).

If in (1) we let \(k(z) = q(\phi(z)) + O(\epsilon) \), then

\[
z^* = z + \epsilon k(z) = z + \epsilon q(\phi(z)) + O(\epsilon^2)
\]

varies the domain \(D \) to give the domain \(D^* \). Schiffer’s variational formula (2), with \(\eta = 0 \), thus becomes

\[
(4) \quad \delta g(\xi, 0) = \text{Re} \left\{ \frac{1}{2\pi i} \int \frac{p'(z, 0) p'(z, \xi) q(\phi(z)) dz}{w} \right\} + O(\epsilon^2).
\]

Now

\[
p(z, \xi) = - \log \frac{\phi(z) - \phi(\xi)}{1 - [\phi(\xi)]^{-1} \phi(z)}
\]

and

\[
p'(z, \xi) = - \frac{[\phi(\xi)]^{-1} \phi'(z)}{1 - [\phi(\xi)]^{-1} \phi(z)} - \frac{\phi'(z)}{\phi(z) - \phi(\xi)}.
\]

In view of this and the fact that \(\phi'(z) = 1/f'(w) \) we have

\[
\frac{1}{2\pi i} \int \frac{p'(z, 0) p'(z, \xi) q(\phi(z)) dz}{w} = \frac{q(w)}{w f'(w)} \frac{1}{w - \omega} - \frac{1}{f'(w)(w - 1/\omega)} \int q(w) f'(w) dw
\]

which we wish to evaluate.

Let \(\sum_{n=-\infty} a_n w^n \) be the Laurent expansion of \(q(w)/wf'(w) \) about \(w = 0 \). Now
\[
\frac{1}{w - \omega} = \frac{1}{w} \frac{1}{1 - \omega / w} = \sum_{n=0}^{\infty} \omega^n w^{n-1}
\]

and
\[
\frac{1}{w - 1/\omega} = -\frac{1}{\omega} \frac{1}{1 - \omega / w} = -\sum_{k=0}^{\infty} \omega^{k+1} w^k.
\]

Thus
\[
\frac{q(w)}{wf'(w)} \frac{1}{w - \omega} = \sum_{n=-\infty}^{\infty} a_n \omega^n \sum_{n=0}^{\infty} \omega^n w^{n-1}
\]
\[
= \sum_{\mu=-\infty}^{\infty} \sum_{n=\mu+1}^{\infty} a_n \omega^{n-\mu} w^\mu.
\]
(5)

and
\[
\frac{q(w)}{wf'(w)} \frac{1}{w - 1/\omega} = -\sum_{n=-\infty}^{\infty} a_n \omega^n \sum_{k=0}^{\infty} \omega^{k+1} w^k
\]
\[
= -\sum_{\mu=-\infty}^{\infty} \sum_{n=\mu+1}^{\infty} a_n \omega^{n-\mu} w^\mu.
\]
(6)

The coefficient of \(w^{-1}\) is \(\sum_{n=0}^{\infty} a_n \omega^n\) in (5) and \(-\sum_{n=-\infty}^{-1} a_n \omega^n\) in (6). Thus, by the residue theorem, we have
\[
\frac{1}{2\pi i} \int_{\gamma} \frac{y'(z, 0) y'(z, \xi) eq(\phi(z))}{\omega f'(\omega)} dz
\]
\[
= \varepsilon \sum_{n=0}^{\infty} a_n \omega^n + \varepsilon^{-1} \sum_{n=-\infty}^{n=0} a_n \omega^{-n}
\]
\[
= \varepsilon \sum_{n=0}^{\infty} a_n \omega^n - \varepsilon^{-1} \sum_{n=-\infty}^{n=0} a_n \omega^n + \varepsilon^{-1} \sum_{n=-\infty}^{n=0} a_n (1/\omega)^n
\]
\[
= \frac{eq(\omega)}{\omega f'(\omega)} - \varepsilon S(\omega) + \varepsilon S(1/\omega).
\)

And with this, equation (4) becomes
\[
\delta_g(z, 0) = \text{Re} \left\{ \frac{eq(\omega)}{\omega f'(\omega)} - \varepsilon S(\omega) + \varepsilon S(1/\omega) \right\} + O(\varepsilon^2),
\]

where we conjugate \(S(1/\omega)\) so that the expression in braces is analytic.
Let $\phi^*_1(\zeta)$ map D^* schlichtly onto $|w| < 1$ such that $\phi^*_1(0) = 0$. Now $g(\zeta, 0) = -\log |\phi(\zeta)|$ so
\[
\log |\phi^*_1(\zeta)| - \log |\phi(\zeta)| = \delta g(\zeta, 0) = \Re\{K\} + O(\epsilon^2),
\]
where $K = \epsilon g(\omega)/\omega f'(\omega) - \epsilon S(\omega) + \epsilon S(1/\omega)$. Completing this analytically and taking exponentials we have
\[
\phi^*_1(\zeta)e^{-i\epsilon} - \phi(\zeta) = -\phi(\zeta)K + O(\epsilon^2),
\]
where ϵ is a real constant. Let $\phi^*(\zeta) = \phi^*_1(\zeta)e^{-i\epsilon}$ and let f^* be the inverse of ϕ^*. Then
\[
\phi^*(\zeta) - \phi(\zeta) = -\phi(\zeta)K + O(\epsilon^2)
\]
and since $f^*(\omega^*) = f^*(\phi^*(\zeta)) = \zeta = f(\omega),$
\[
f(\omega) = f^*(\omega^*) = f^*(\omega - \omega K + O(\epsilon^2))
= f^*(\omega) - f^*(\omega)\omega K + O(\epsilon^2)
\]
\[
= f^*(\omega) - f'(\omega)\omega K + O(\epsilon^2),
\]
since $f^*(\omega) = f'(\omega) + O(\epsilon^2)$. This completes the proof since ω was arbitrary in $|w| < 1$, i.e.,
\[
f^*(w) = f(w) + \epsilon g(w) - \epsilon w f'(w)S(w) + \epsilon w f'(w)\overline{S(1/\omega)} + O(\epsilon^2)
\]
is valid in $|w| < 1$.

References

University of Maryland