ERRATA, VOLUME 14

K. N. Srivastava, A class of integral equations involving ultraspherical polynomials as kernel, pp. 932–940.

Page 934, Equation (9): “$C_{n-1}^{\lambda}(u/v)$” should read “$C_{n-1}^{-\lambda}(u/v)$.”

Page 936, Equation (13):

\[
\left[\frac{n-2}{2}\right] \quad \text{should read} \quad \left[\frac{n-1}{2}\right].
\]

ERRATA, VOLUME 15

Culbreth Sudler Jr., Two algebraic identities and the unboundedness of a restricted partition function, pp. 16–20.

Page 18, line 12 (second term in expression for $g_\nu(x)$). The exponent should read $tu+t(t+1)/2$.

G. M. Bergman, A ring primitive on the right but not on the left, pp. 473–475.

Page 474, line 6. Read $n>j$ for $n>0$.
Line 10. For the last 2^n-i-1, read 2^n-i.

Shreeram Abhyankar, A remark on the nonnormal locus of an analytic space, pp. 505–508.

Line 5 on page 507 which now reads “K into L. $\cdots g(R')=S'$.” should be changed to read “K into L. Let S^* be the quotient ring of $g(R')$ with respect to $g(M)$ where we regard S^* to be a subring of L. Assume that $g(K)=L$. Then $S'=S^*$.”

Lines 9 to 14 on page 507 which now read “$g(R')=S'$. Now \cdots normal.” should be changed to read “$S'=S^*$. Now assume that furthermore $c(R)\cap M \neq \emptyset$. Fix $w \in c(R) \cap M$. Since $S'=S^*$, given any $z \in S'$ there exists $w' \in R'$ and $w^* \in M$ such that $z=g(w')/g(w^*)$; since $w \in M$, upon multiplying the numerator and the denominator by $g(w)$ we get that $z=g(ww')/g(ww^*)$; since $w' \in R'$ and $w \in c(R)$ we get that $ww' \in R$; now $ww^* \in M$ and hence $z \in S$. Thus $S'=S$, i.e., S is normal.”

The third and the fourth sentences in the last paragraph on page 507 which now read “Since $g(R) \subseteq S$, \cdots be given.” should be changed to read “Therefore by [5, Lemma 2 on p. 257] we get that S^* is integral over S and hence $S^* \subseteq S'$. To show that $S' \subseteq S^*$, let $x' \in S'$ be given.”

The last two sentences on page 508 which now read “Since $mm' \in M$, \cdots hence $x' \in g(R')$.” should be changed to read “Now $mm' \in M$ and $x'=g(t)/g(mm')$. Therefore $x' \in S^*$.”