ERRATA, VOLUME 14

K. N. Srivastava, A class of integral equations involving ultraspherical polynomials as kernel, pp. 932-940.

Page 934, Equation (9): "
$$C_{n-1}^{\lambda}(u/v)$$
" should read " $C_{n-1}^{-1}(u/v)$."

Page 936, Equation (13):

"
$$\left\lceil \frac{n-2}{2} \right\rceil$$
" should read " $\left\lceil \frac{n-1}{2} \right\rceil$ ".

ERRATA, VOLUME 15

Culbreth Sudler Jr., Two algebraic identities and the unboundedness of a restricted partition function, pp. 16-20.

Page 18, line 12 (second term in expression for $g_u(x)$). The exponent should read tu+t(t+1)/2.

G. M. Bergman, A ring primitive on the right but not on the left, pp. 473-475.

Page 474, line 6. Read n>j for n>0.

Line 10. For the last 2^{n-j-1} , read 2^{n-j} .

Line 24. After "subring," insert "of A."

Shreeram Abhyankar, A remark on the nonnormal locus of an analytic space, pp. 505-508.

Line 5 on page 507 which now reads "K into L. \cdots g(R') = S'." should be changed to read "K into L. Let S^* be the quotient ring of g(R') with respect to g(M) where we regard S^* to be a subring of L. Assume that g(K) = L. Then $S' = S^*$."

Lines 9 to 14 on page 507 which now read "g(R') = S'. Now ... normal." should be changed to read " $S' = S^*$. Now assume that furthermore $\mathfrak{c}(R) \cap M \neq \emptyset$. Fix $w \in \mathfrak{c}(R) \cap M$. Since $S' = S^*$, given any $z \in S'$ there exists $w' \in R'$ and $w^* \in M$ such that $z = g(w')/g(w^*)$; since $w \in M$, upon multiplying the numerator and the denominator by g(w) we get that $z = g(ww')/g(ww^*)$; since $w' \in R'$ and $w \in \mathfrak{c}(R)$ we get that $ww' \in R$; now $ww^* \in M$ and hence $z \in S$. Thus S' = S, i.e., S is normal."

The third and the fourth sentences in the last paragraph on page 507 which now read "Since $g(R) \subset S$, \cdots be given." should be changed to read "Therefore by [5, Lemma 2 on p. 257] we get that S^* is integral over S and hence $S^* \subset S'$. To show that $S' \subset S^*$, let $x' \in S'$ be given."

The last two sentences on page 508 which now read "Since $mm' \in M$, \cdots hence $x' \in g(R')$." should be changed to read "Now $mm' \in M$ and x' = g(t)/g(mm'). Therefore $x' \in S^*$."