1. Introduction. It is well known that there exists a homeomorphism between two Q-spaces (= realcompact spaces) X and Y if and only if there exists an isomorphism between $C(X)$ and $C(Y)$, their rings of real-valued, continuous functions. This suggests the problem of finding algebraic conditions relating $C(X)$ and $C(Y)$ which are both necessary and sufficient for embedding Y in X. Our investigations in this direction have led to the consideration of three types of ring homomorphisms. Before we define these, let us recall that an ideal M of a ring A is a real ideal if A/M is isomorphic to R, the field of real numbers. We shall refer to the intersection of a collection of real ideals as a δ-real ideal, and we say that a subring B of a ring A is δ-dense in A if for every pair M_1 and M_2 of δ-real ideals of A with $M_1 - M_2 \neq \emptyset$, $M_1 - M_2$ contains an element of B.

Definition (1.1). A homomorphism from a ring A into a ring B is a δ-homomorphism if it is nontrivial and the image of A is δ-dense in B.

We shall refer to a set of elements of a ring as subreal if it is contained in a real ideal of the ring.

Definition (1.2). A δ-homomorphism is a δF-homomorphism if the image of every real ideal containing the kernel is subreal.

Definition (1.3). A δ-homomorphism from a ring A into a ring B is a δG-homomorphism if for every real ideal M of A whose image is subreal, there exists an element $a \in M$ such that the image of every real ideal not containing a is subreal.

The four main results of this paper are given in Theorems (2.3), (2.5), (2.6) and (2.7). From these it follows that a Q-space Y can be embedded in a Q-space X if and only if there exists a δ-homomorphism from $C(X)$ into $C(Y)$ and that Y can be embedded in X as a closed (open, dense) subset if and only if there exists a δF-homomorphism (δG-homomorphism, δ-isomorphism) from $C(X)$ into $C(Y)$.

2. The embedding theorems. It will be assumed that all topological spaces discussed here are completely regular and Hausdorff.
Theorem (2.1). Let X be a Q-space, Y an arbitrary space, and ϕ a homomorphism from $C(X)$ into $C(Y)$. Then ϕ has the property that

(2.1.1) for every $g \in C(Y)$ and $y \in Z(g)$, there exists an $f \in C(X)$ such that $y \in Z(\phi f)$ and $Z(g) \subseteq Z(\phi f)$

if and only if there is a homeomorphism h from Y into X such that $\phi f = f \circ h$ for all $f \in C(X)$.

Proof. (Sufficiency). Suppose $\phi f = f \circ h$ for all $f \in C(X)$ and that $y \in Z(g)$ where $g \in C(Y)$. Then $h(y) \in Cl_x(h[Z(g)])$ and there exists a function $f \in C(X)$ which vanishes on $Cl_x(h[Z(g)])$ but not at $h(y)$. It follows that $y \in Z(\phi f)$ and $Z(g) \subseteq Z(\phi f)$.

(Necessity). Now let ϕ be a homomorphism from $C(X)$ into $C(Y)$ satisfying (2.1.1). We define a mapping h from Y into X as follows. Let $y \in Y$ be given. Then $\phi_y: C(X) \to \mathbb{R}$ is a homomorphism where ϕ_y is given by $\phi_y f = (\phi f)(y)$. Moreover, since $y \in Z(1)$, (2.1.1) guarantees the existence of an element $f \in C(X)$ such that $y \in Z(\phi f)$. Hence $\phi_y f \neq 0$, i.e., ϕ_y is a nontrivial homomorphism into \mathbb{R}. Since X is a Q-space, there exists a unique $x \in X$ such that for each $f \in C(X)$, $\phi_y f = f(x)$. We define $h(y) = x$. Then for any $f \in C(X)$, $\phi f = f \circ h$ and it remains for us to show that h is a homeomorphism.

For any Z-set $Z(f)$ of X, we have $h[Z(f)] = (f \circ h)^{-1}(0) = Z(\phi f)$ and since the Z-sets of X form a basis for the closed sets, we conclude that h is continuous.

Now if y_1 and y_2 are two distinct elements of Y, there is a function $g \in C(Y)$ such that $g(y_1) = 0$ and $g(y_2) = 1$. Then by (2.1.1) there is an $f \in C(X)$ such that $y_1 \in Z(\phi f)$ and $y_2 \in Z(\phi f)$. Hence $f(h(y_1)) = \phi_y f(y_1) \neq 0$ while $f(h(y_2)) = \phi_y f(y_2) = 0$. Therefore $h(y_1) \neq h(y_2)$ and h is one-to-one.

To conclude the proof, we need only show h^{-1} is a continuous mapping from $h[Y]$ onto Y. Choose $g \in C(Y)$ and $y \in Z(g)$. Let f denote the function whose existence is guaranteed by (2.1.1). It follows that $h(y) \in h[Y] \cap [X - Z(f)] \subseteq h[Y - Z(g)]$. Hence h is an open mapping which implies h^{-1} is continuous.

If X is any topological space and F is a closed subset of X, then $\{ f \in C(X) : F \subseteq Z(f) \}$, which we will denote hereafter by M_F, is an ideal of $C(X)$. Moreover, $M_F = \cap \{ M_x : x \in F \}$ and hence is a δ-real ideal. In the case of Q-spaces, the converse is also true. That is, if M is a δ-real ideal of $C(X)$ where X is a Q-space, there is a unique closed subset $F \subseteq X$ such that $M = M_F$. In fact, X is a Q-space if

* $Z(g)$ denotes the set of points on which g vanishes and is referred to as a Z-set.

* For any real number k, k denotes the function which maps every point of the space into k.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and only if every δ-real ideal of $C(X)$ is of the form M_F for some closed subset F of X. We shall use these facts without explicit mention.

THEOREM (2.2). Let X be an arbitrary topological space and Y a Q-space. The following statements concerning a homomorphism ϕ from $C(X)$ into $C(Y)$ are equivalent.

1. $(2.2.1)$ For every $g \in C(Y)$ and $y \in Z(g)$, there exists an $f \in C(X)$ such that $y \in Z(\phi f)$ and $Z(g) \subseteq Z(\phi f)$.
2. $(2.2.2)$ ϕ is a δ-homomorphism.
3. $(2.2.3)$ The image of $C(X)$ separates points and closed sets and is contained in no δ-real ideal of $C(Y)$.
4. $(2.2.4)$ ϕ is the identity mapping on constant functions and the image of $C(X)$ separates points and closed sets.4

Proof. $(2.2.1) \Rightarrow (2.2.2)$. Let M_F and M_H be two δ-real ideals of $C(Y)$ with $M_F - M_H \neq \emptyset$. Then $H \subseteq F$ and there is an element $y \in H - F$ and a function $g \in C(Y)$ which vanishes on F but not at y. According to $(2.2.1)$, there exists an $f \in C(X)$ such that $y \in Z(\phi f)$ and $Z(g) \subseteq Z(\phi f)$. Hence $\phi f \in M_F - M_H$.

$(2.2.2) \Rightarrow (2.2.3)$. Let M_F be any δ-real ideal of $C(Y)$. If $F = Y$, then $M_F = (0)$ and since ϕ is nontrivial, the image of $C(X)$ cannot be contained in M_F. On the other hand, if $F \neq Y$, choose $y \in F$. Then $M_Y - M_F \neq \emptyset$ and hence must contain an element of the image of $C(X)$. In either case, $\phi[C(X)]$ is not contained in M_F. Now then, if $y \in F$, $M_F - M_Y \neq \emptyset$ and $\phi f \in M_F - M_Y$ for some $f \in C(X)$. Hence $\phi f(y) \notin \text{Cl}(\phi f[F])$, i.e., $\phi[C(X)]$ separates points and closed sets.

$(2.2.3) \Rightarrow (2.2.4)$. Consider $\phi 1$ and suppose there exists a point $y \in Y$ such that $\phi 1(y) = 0$. Then for any $f \in C(X)$, $\phi f(y) = [\phi f(y)][\phi 1(y)] = 0$ which implies $\phi[C(X)] \subseteq M_y$, a contradiction since the image of $C(X)$ is contained in no δ-real ideal. Hence $\phi 1(y) = 1$ for every $y \in Y$, i.e., $\phi 1 = 1$. By induction, it follows that $\phi n = n$ for every positive integer n and from this it follows that $\phi r = r$ for every rational number r. Using the fact that the rationals are dense in R and that ϕ is also a lattice homomorphism, it can be shown that $\phi k = k$ for every real number k.

$(2.2.4) \Rightarrow (2.2.1)$. Suppose $g \in C(Y)$ and $y \in Z(g)$. Then since $\phi[C(X)]$ separates points and closed sets, there is a function $f \in C(X)$ such that $k = \phi f(y) \notin \text{Cl}(\phi f[Z(g)])$. Let $f_1 = f - k$. Since ϕ is the identity mapping on constant functions, $\phi f_1(y) = 0$ and $\phi f_1(y) \notin \text{Cl}(\phi f_1[Z(g)])$. Hence there exists a positive number ϵ such that

4 S. Mrówka pointed out that $(2.2.4)$ is equivalent to $(2.2.1)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[|\phi f(x)| > \varepsilon \quad \text{for} \quad \varepsilon \in \mathbb{R}. \]
Now let \(f_{\varepsilon} = \varepsilon - |f_1| \). Since \(|f| \leq |f_1| \), \(\phi f_{\varepsilon}(y) \neq 0 \) and \(Z(g) \subset Z(\phi f_{\varepsilon}) \).

From Theorems (2.1) and (2.2), we get

Theorem (2.3). Let \(X \) and \(Y \) be \(Q \)-spaces. A homomorphism from \(C(X) \) into \(C(Y) \) is a \(\delta \)-homomorphism if and only if there exists a homeomorphism \(h \) from \(Y \) into \(X \) such that \(\phi f = f \circ h \) for all \(f \in C(X) \).

The following lemma is needed.

Lemma (2.4). Let \(X \) and \(Y \) be topological spaces and \(h \) a continuous function from \(Y \) into \(X \). Define a homomorphism \(\phi \) from \(C(X) \) into \(C(Y) \) by \(\phi f = f \circ h \). Then for real ideals \(M_x \) and \(M_y \) of \(C(X) \) and \(C(Y) \), respectively, \(\phi[M_x] \subset M_y \) if and only if \(h(y) = x \).

Proof Suppose \(h(y) = x \). Then for \(f \in M_x \), \(\phi f(y) = f(h(y)) = f(x) = 0 \). Thus \(\phi[M_x] \subset M_y \). Conversely, suppose \(\phi[M_x] \subset M_y \) and let \(f \in C(X) \). Then \(f \circ h \in M_y \) and \(f \circ h \in M_x \). Hence \(f(h(y)) = \phi f(y) = f(x) \) for every \(f \in C(X) \) which implies that \(h(y) = x \).

Theorem (2.5). Let \(X \) and \(Y \) be \(Q \)-spaces. A homomorphism from \(C(X) \) into \(C(Y) \) is a \(\delta F \)-homomorphism if and only if there exists a homeomorphism \(h \) from \(Y \) into \(X \) such that \(\phi f = f \circ h \) for all \(f \in C(X) \), and \(h[Y] \) is a closed subset of \(X \).

Proof (Sufficiency). Let \(M \) be a real ideal of \(C(X) \) which contains the kernel, \(K(\phi) \), of \(\phi \). Then \(M = M_x \) for some \(x \in X \). Moreover, since \(h[Y] \) is closed, \(x \in h[Y] \) since otherwise there would exist a function \(f \in C(X) \) vanishing on \(h[Y] \) but not at \(x \). This would imply \(f \in K(\phi) - M_x \), a contradiction. Then \(x = h(y) \) for some \(y \in Y \) and by the previous lemma, \(\phi[M_x] \subset M_y \), that is, the image of \(M \) is subreal in \(C(Y) \).

(Necessity) Now suppose \(\phi \) is a \(\delta F \)-homomorphism. By Theorem (2.3), there is a homeomorphism \(h \) from \(Y \) into \(X \) such that \(\phi f = f \circ h \) for all \(f \in C(X) \). It remains to show that \(h[Y] \) is a closed subset of \(X \). Choose \(x \in Cl(h[Y]) = F \). Then \(K(\phi) = M_F \) and \(M_F \subset M_x \). Therefore there is a real ideal \(M_y \) of \(C(Y) \) such that \(\phi[M_x] \subset M_y \), which, by Lemma (2.4), implies \(x = h(y) \). Thus \(x \in h[Y] \) and we conclude that \(h[Y] = Cl(h[Y]) \).

Theorem (2.6). Let \(X \) and \(Y \) be \(Q \)-spaces. A homomorphism \(\phi \) from \(C(X) \) into \(C(Y) \) is a \(\delta G \)-homomorphism if and only if there exists a homeomorphism \(h \) from \(Y \) into \(X \) such that \(\phi f = f \circ h \) for all \(f \in C(X) \), and \(h[Y] \) is an open subset of \(X \).

Proof (Sufficiency). Let \(M_x \) be a real ideal of \(C(X) \) whose image is subreal in \(C(Y) \). Hence for some \(y \in Y \), \(\phi[M_x] \subset M_y \). Again using
Lemma (2.4), we have \(h(y) = x \). Then \(x \in X - h[Y] \) which is a closed subset of \(X \) and there is an \(f \in C(X) \) which vanishes on \(X - h[Y] \) but not at \(x \). Then \(f \in M_s \) and it follows that the image of every real ideal not containing \(f \) is subreal.

(Necessity) Now suppose \(\phi \) is a \(\delta G \)-homomorphism and \(x \in h[Y] \). Then \(x = h(y) \) for some \(y \in Y \) and \(\phi[M_s] \subset M_p \). Therefore there exists a function \(f \in C(X) \) such that \(f \in M_s \) and the image of every real ideal not containing \(f \) is subreal. From this it follows that \(x \in [X - Z(f)] \subset h[Y] \) which in turn implies that \(h[Y] \) is open.

Finally, we note that if \(h \) is a continuous function from \(Y \) into \(X \), the homomorphism \(\phi \) given by \(\phi f = f \circ h \) is an isomorphism if and only if \(h[Y] \) is dense in \(X \). This, in conjunction with Theorem (2.3), gives:

Theorem (2.7). Let \(X \) and \(Y \) be \(Q \)-spaces. A homomorphism \(\phi \) from \(C(X) \) into \(C(Y) \) is a \(\delta \)-isomorphism if and only if there exists a homeomorphism \(h \) from \(Y \) into \(X \) such that \(\phi f = f \circ h \) for all \(f \in C(X) \) and \(h[Y] \) is a dense subset of \(X \).

Bibliography

Pennsylvania State University and State University of New York at Buffalo