TAME ARCS ON DISKS

JOSEPH MARTIN

It is the goal of this note to show that each disk in \(E^3 \) contains a tame arc which intersects the boundary of \(D \). In [1] Bing shows that each disk in \(E^3 \) contains many tame arcs. The reason that the arguments given in [1] do not show that each disk contains a tame arc intersecting the boundary is that a disk in \(E^3 \) need not lie on a closed surface in \(E^3 \) [7]. This difficulty can be overcome using Bing's improvement of the "side approximation theorem" [2] and a theorem of Hempel [6].

Suppose that \(D \) is a disk in \(E^3 \).

Lemma. If \(D \) lies on a 2-sphere in \(E^3 \) then \(D \) contains a tame arc which intersects both \(\text{Int} \ D \) and \(\text{Bd} \ D \).

Proof. Let \(S \) be a 2-sphere in \(E^3 \) containing \(D \). It follows from [1] that for each positive number \(\epsilon \) there exists a tame 2-sphere \(S' \) such that (i) \(S \cap S' \) contains a tame Sierpiński curve \(X \) and, (ii) each component of \(S-X \) is of diameter less than \(\epsilon \).

Now if \(\epsilon \) is chosen less than \(\min \{ \text{diam} \ D, \text{diam} \ (S-D) \} \) then \(X \) must intersect both \(D \) and \(S-D \), and hence \(\text{Bd} \ D \). It follows that \(D \) contains a tame arc which intersects both \(\text{Int} \ D \) and \(\text{Bd} \ D \). This establishes the lemma.

Theorem. \(D \) contains a tame arc which intersects both \(\text{Int} \ D \) and \(\text{Bd} \ D \).

Proof. Let \(J_1, J_2, \ldots \) be a sequence of tame simple closed curves on \(D \) such that if \(D_1, D_2, \ldots \) are the disks on \(D \) bounded, respectively, by \(J_1, J_2, \ldots \) then \(D_i \subset \text{Int} \ D_{i+1} \) and \(\cup D_i = \text{Int} \ D \). The existence of these tame simple closed curves follows from [1]. It follows from a theorem of Hempel [6] that for each \(i \), \(D_i \) lies on a closed surface in \(E^3 \). This is because \(D_i \) is interior to the larger disk \(D_{i+1} \). Now, using this fact and repeatedly applying the results of [2] and the techniques of [1], there exist tame disks \(D_i', D_i', \ldots \) such that

Presented to the Society August 29, 1963; received by the editors September 7, 1963.

1 This paper was written while the author was a postdoctoral fellow of the National Science Foundation.

131
(a) $\text{Bd } D'_i = J_i$,

(b) $D_i \cap D'_i$ is a Sierpiński curve,

(c) $D'_i \subset \text{Int } D_{i+1}$, and

(d) $\text{Cl}[UD'_i]$ is a disk bounded by $\text{Bd } D$.

The procedure for obtaining these disks is, roughly, as follows: a dense, null sequence of disks is removed from the interior of D_1 and each of these disks is replaced by a tame disk. The resulting tame disk is D'_1. Then, disks are removed from the annulus on D bounded by J_1 and J_2 and are replaced by tame disks to obtain D'_i. This process is continued. Care is exercised in replacing disks with tame disks so that each of D'_i and $\text{Cl}[UD'_i]$ is a disk. It follows from a theorem of Gillman [4] that the disks which are removed at the ith stage need not intersect J_i. For more details on this replacing process the reader is referred to [1].

Now let D' denote $\text{Cl}[UD'_i]$. Notice that $D \cap D'$ is a Sierpiński curve which contains $\text{Cl}[\bigcup J_i]$. Now D' is locally tame at each point of $\text{Int } D'$ and it follows from [3] that there is no loss in generality in assuming that D' is locally polyhedral at each point of $\text{Int } D'$. It follows from [5] that D' lies on a 2-sphere in E^3.

Now by the lemma there exists a tame arc α on D' which intersects both $\text{Int } D'$ and $\text{Bd } D'$. Without loss of generality we may assume that $\alpha \cap \text{Bd } D = \{ P \}$. Let β be an arc in $D \cap D'$ having P for one end-point and such that $\beta - \{ P \} \subset \text{Int } D$.

Let K be a subdisk of D' such that (i) $\alpha \cup \beta \subset K$, (ii) $K \cap \text{Bd } D' = \{ P \}$ and, (iii) K is locally polyhedral except at P. Then there is a 2-sphere S in E^3 such that $K \subset S$ and S is locally polyhedral except at P. But P lies on the tame arc α and it follows from [8] that S is a tame 2-sphere. Thus the arc β is tame and satisfies the conclusion of the theorem. This establishes the theorem.

Notice that the arguments given actually show that the set of points of $\text{Bd } D$ which are accessible by tame arcs from $\text{Int } D$ is dense in $\text{Bd } D$.

Corollary. If $\epsilon > 0$ then there is a triangulation T of D such that (i) mesh $T < \epsilon$ and (ii) if σ is a wild 1-simplex of T then $\sigma \subset \text{Bd } D$.

References

3. ———, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145–158.

The Institute for Advanced Study

SPECIAL \(n \)-MANIFOLDS WITH BOUNDARY

P. H. DOYLE AND J. G. HOCKING

By a K-R manifold we mean an \(n \)-manifold with boundary \(M^n \) such that \(\text{Int } M^n = E^n \) and \(\text{Bd } M^n = E^{n-1} \); \(\text{Int } M^n \) and \(\text{Bd } M^n \) are the interior and boundary of \(M^n \) respectively. Both Cantrell [2] and Doyle [3] have shown that for \(n \neq 3 \), each K-R manifold is the product \(E^{n-1} \times [0, 1) \). But for \(n = 3 \) there are infinitely many K-R manifolds which are topologically distinct as pointed out in [4] and [5]. We will investigate certain properties of these manifolds with boundary.

Lemma 0. Let \(M^n \) be a K-R manifold. Then \(M^n \) is the product \(E^{n-1} \times [0, 1) \) if each compact set in \(M^n \) lies in a closed \(n \)-cell in \(M^n \).

Proof. The proof is simple in that \(M^n \) can be represented as a union of closed \(n \)-cells \(\bigcup C_i \) where \(C_i \cap \text{Bd } M^n \) is an \((n-1)\)-cell \(D_i \) nicely imbedded in \(\text{Bd } C_i \) and \(\text{Bd } M^n \), \(D_i \subset \text{Int } D_{i+1} \) and \(C_i - D_i \subset \text{Int } C_{i+1} \), while \([C_{i+1} - C_i] \) is an \(n \)-cell. One can then construct a homeomorphism of \(M^n \) onto a copy of \(E^{n-1} \times [0, 1) \).

Lemma 1. Let \(M^n \) be an \(n \)-manifold with boundary. If \(C \) is a compact set in \(M^n \) such that \(C \cap \text{Bd } M^n \) lies in an open \((n-1)\)-cell in \(\text{Bd } M^n \), then there is a pseudo-isotopy \(h_t \) of \(M^n \) onto \(M^n \) such that \(h_t(C) \subset F \cup C' \), where \(F \) is a fiber in a collar about \(\text{Bd } M^n \), and \(C' \) is a compact set in \(\text{Int } M^n \).

Received by the editors August 4, 1963.

\(^1\) The work was done under National Science Foundation Grant GP-31.