The closed invariant subspaces of multiplication by \(z \) in \(H^2 \) were determined by Beurling [1, Theorem IV, p. 253]. Vector generalizations of this theorem are known (Halmos [3] and the author [6]), but they involve an unnecessary use of analysis. We can now prove the theorem of [6] by purely algebraic and geometric methods. To emphasize these methods, we work with sequences, which we write as formal power series, rather than functions analytic in the unit disk.

Let \(\mathcal{C} \) be a Hilbert space with elements denoted by \(a, b, c, \cdots \), and with norm \(\| \cdot \| \). If \(b \) is a vector in \(\mathcal{C} \), then \(b \) is the linear functional on \(\mathcal{C} \) such that \(\langle b, a \rangle = \langle a, b \rangle \) for every \(a \) in \(\mathcal{C} \). A formal power series is a sequence \((a_0, a_1, a_2, \cdots) \) written \(f(z) = \sum a_n z^n \) with an indeterminate \(z \). Let \(f(z) = \sum a_n z^n \) and \(g(z) = \sum b_n z^n \) be formal power series with coefficients \(a_n \) and \(b_n \) in \(\mathcal{C} \); let \(B(z) = \sum B_n z^n \) be a formal power series whose coefficients \(B_n \) are (bounded) operators in \(\mathcal{C} \); let \(\alpha \) be a complex number, and let \(c \) be a vector in \(\mathcal{C} \). Then \(f(z) + g(z) \), \(\alpha f(z) \), \(cf(z) \), and \(B(z) f(z) \) are the formal power series \(\sum (a_n + b_n) z^n \), \(\sum (\alpha a_n) z^n \), \(\sum (c a_n) z^n \), and \(\sum (\sum_{k=0}^{n} B_k a_{n-k}) z^n \), respectively. A sequence \((f_k(z)) \) of formal power series with coefficients in \(\mathcal{C} \) is said to be formally convergent if, for each \(n = 0, 1, 2, \cdots \), the corresponding sequence of \(n \)-th coefficients is convergent. Let \(\mathcal{C}(z) \) be the Hilbert space of formal power series \(f(z) = \sum a_n z^n \) with coefficients \(a_n \) in \(\mathcal{C} \), such that

\[
\| f \|^2 = \sum |a_n|^2 < \infty.
\]

An ideal of \(\mathcal{C}(z) \) is a subspace \(\mathfrak{I} \) of \(\mathcal{C}(z) \) which contains \(zf(z) \) whenever it contains \(f(z) \). The problem is to determine the closed ideals of \(\mathcal{C}(z) \). Let \(B(z) \) be a formal power series whose coefficients are operators on \(\mathcal{C} \), and let \(N(B) \) be the set of vectors \(c \) in \(\mathcal{C} \) such that \(B(z)c = 0 \) identically. We write \(\mathfrak{I}(B) \) for the set of all products \(B(z)f(z) \) with \(f(z) \) in \(\mathcal{C}(z) \). The relevant condition on \(B(z) \) is:

1. \((z^n B(z)c_n) \) is an orthonormal set in \(\mathcal{C}(z) \) whenever \((c_n) \) is a sequence of unit vectors in \(\mathcal{C} \) orthogonal to \(N(B) \).

It is not difficult to show that (1) is equivalent to the assertion that \(f(z) \rightarrow B(z)f(z) \) is a partial isometry of \(\mathcal{C}(z) \) into itself.
Theorem. A subset \(\mathfrak{M} \) of \(\mathcal{C}(z) \) is a closed ideal if and only if \(\mathfrak{M} = \mathfrak{N}(B) \) for some formal power series \(B(z) \) with operator coefficients which satisfies (1).

Proof. If a series \(\sum f_n(z) \) converges in the metric of \(\mathcal{C}(z) \), then it converges formally, and the two limits coincide. For, the linear transformation from \(\mathcal{C}(z) \) to \(\mathcal{C} \), which takes a formal power series into its \(n \)th coefficient, is continuous.

Let \(B(z) \) satisfy (1) and let \(g(z) = B(z)f(z) \) be any element of \(\mathfrak{N}(B) \). If \(f(z) = \sum a_n z^n \) is chosen so that its coefficients are orthogonal to \(\mathfrak{N}(B) \), then \(\sum a_n B(z) a_n \) converges in the metric of \(\mathcal{C}(z) \), and its norm squared is

\[
\sum \| z^n B(z) a_n \|^2 = \sum |a_n|^2 = \| f \|^2.
\]

But \(\sum a_n B(z) a_n \) converges formally to \(g(z) \), so by the above remark, \(g(z) \) is in \(\mathcal{C}(z) \) and \(\| g \| = \| f \| \). We conclude easily that \(\mathfrak{N}(B) \) is a closed ideal of \(\mathcal{C}(z) \).

Conversely, let \(\mathfrak{N} \) be a closed ideal of \(\mathcal{C}(z) \) and let \(\mathfrak{B} \) be the orthogonal complement in \(\mathfrak{N} \) of the series \(zf(z) \) with \(f(z) \) in \(\mathfrak{N} \). We begin by showing that the dimension of \(\mathfrak{B} \) is no more than that of \(\mathcal{C} \). Since \(\mathfrak{B} \) is a closed subspace of \(\mathcal{C}(z) \), the assertion is clear when \(\mathfrak{N} \) has infinite dimension. For in this case, \(\mathfrak{N} \) and \(\mathcal{C}(z) \) have the same dimension. Now let \(\mathfrak{B} \) have finite dimension \(r \) and let \(c_1, \ldots, c_r \) be an orthonormal basis for \(\mathfrak{B} \). Suppose, to the contrary, that the dimension of \(\mathfrak{B} \) is greater than the dimension of \(\mathfrak{N} \). Then there is an orthonormal set \(f_0(z), \ldots, f_r(z) \) in \(\mathfrak{N} \) containing \(r+1 \) elements. By the definition of \(\mathfrak{N} \),

\[
\langle z^m f_i(z), z^n f_j(z) \rangle = \delta_{mn} \delta_{ij},
\]

\(m, n = 0, 1, 2, \ldots \), and \(i, j = 0, \ldots, r \). Let \(M \) be the \((r+1) \times (r+1)\) matrix whose \(i \)th row vector is

\[
X_i = (\ell f_i(z), \ell f_i(z), \ldots, \ell f_i(z), \ell f_i(z)).
\]

Since the first and last columns of \(M \) coincide, \(\det M = 0 \). A standard argument \([4, pp. 23-24]\) shows that there are cofactors \(F_0(z), \ldots, F_r(z) \) of \(M \), not all identically zero, such that

\[
F_0(z) \cdot X_0 + \cdots + F_r(z) \cdot X_r = 0.
\]

The cofactors of \(M \) are formal power series with square summable complex coefficients. To prove this, it suffices to show that if \(c \) is any \(c_i \) and if \(f(z) \) is any \(f_i(z) \), then \(F(z) \bar{c} f(z) \) is in \(\mathfrak{K}(z) \) (where \(\mathfrak{K} \) de-
notes the complex numbers) whenever \(F(z) \) is in \(\mathcal{K}(z) \). If \(F(z) = \sum \alpha_n z^n \), then

\[
F(z) \delta f(z) = \sum \alpha_n z^n \delta f(z)
\]

holds with convergence in the formal sense. By (2),

\[
\left\| \sum_{M} \alpha_n z^n \delta f(z) \right\|_{\mathcal{K}(z)}^2 \leq \varepsilon \left\| \sum_{M} \alpha_n z^n f(z) \right\|_{\mathcal{C}(z)}^2 = \sum_{M} |\alpha_n|^2.
\]

It follows that the series in (4) converges in the metric of \(\mathcal{K}(z) \), and by the assertion at the beginning of the proof, (4) holds in the metric of \(\mathcal{K}(z) \). In particular, \(F(z) \delta f(z) \) is in \(\mathcal{K}(z) \). Therefore, the cofactors of \(M \) have square summable coefficients.

Let \(F_i(z) = \sum \alpha_i z^n \). By (3),

\[
\sum_{i=0}^r F_i(z) \cdot f_i(z) = 0
\]

and

\[
\sum [\alpha_0 z^0 f_0(z) + \cdots + \alpha_r z^r f_r(z)] = 0,
\]

with convergence of this last series in the metric of \(\mathcal{C}(z) \). By (2) we obtain the contradiction that the norm squared of the left-hand side of (5) is

\[
\sum (|\alpha_0|^2 + \cdots + |\alpha_r|^2) > 0.
\]

This completes the proof that the dimension of \(\mathcal{B} \) is at most the dimension of \(\mathcal{C} \).

If \(\mathfrak{M} \) is the zero ideal, then \(\mathfrak{M} \) is of the form \(\mathfrak{M}(B) \) trivially. If \(\mathfrak{M} \) contains a nonzero element, so does \(\mathfrak{B} \). Let \((f_i(z))_{i \in I} \) be an orthonormal basis for \(\mathfrak{B} \). Since the dimension of \(\mathfrak{B} \) is no more than the dimension of \(\mathfrak{C} \), there is an orthonormal set \((c_i)_{i \in I} \) in \(\mathfrak{C} \) of the same cardinality. Define a formal power series \(B(z) \) with operator coefficients by

\[
B(z) = \sum c_i f_i(z).
\]

It is easy to see that \(B(z) \) satisfies (1) with \(N(B) \) equal to the orthogonal complement of the \(c_i \) \((i \in I) \), and that \(\mathfrak{M}(B) \subseteq \mathfrak{M} \).

To complete the proof, we will show that the orthogonal complement \(\mathfrak{N} \) of \(\mathfrak{M}(B) \) in \(\mathfrak{M} \) is zero. Notice that \(\mathfrak{B} \subset \mathfrak{M}(B) \) and

\[
\mathfrak{N} = \mathfrak{M}(B) \cap \mathfrak{M} \subseteq \mathfrak{B} \cap \mathfrak{M}.
\]

Let \(f(z) \) be any element of \(\mathfrak{N} \). Then \(f(z) \) is in \(\mathfrak{M} \) and it is orthogonal.
to \(\mathfrak{A} \). By the definition of \(\mathfrak{A} \), \(f(z) = z f_1(z) \) for some \(f_1(z) \) in \(\mathfrak{M} \). If \(g(z) \) is any element of \(\mathfrak{M}(B) \),

\[
\langle f_1(z), g(z) \rangle = \langle z f_1(z), z g(z) \rangle = \langle f(z), g(z) \rangle = 0,
\]

since \(\mathfrak{M}(B) \) is an ideal. Therefore, \(f_1(z) \) is in \(\mathfrak{M} \). Continuing by induction, we see that for every \(r = 1, 2, 3, \ldots \), there is an \(f_r(z) \) in \(\mathfrak{M} \) such that \(f(z) = z f_r(z) \). It follows that \(f(z) = 0 \) identically. Therefore \(\mathfrak{M} = \{0\} \) and \(\mathfrak{M} = \mathfrak{M}(B) \) as asserted.

Added in proof. The methods of this paper have since been used to obtain the existence of invariant subspaces for transformations \(T \) which are bounded by 1, when \(1 - T^*T \) is completely continuous.

References