The space M is called pseudo-isotopically contractible provided that if A is a compact subset of M there is a continuous function $r(x, t)$ of $M \times [0, 1]$ into M such that (1) if $t < 1$, $r|A \times t$ is a homeomorphism onto, and (2) if $t = 1$, $r|A \times 1$ is a point.

Let X be a locally euclidean n-dimensional space with the property that each pair of points lies in the interior of some n-ball. Clearly X is a connected n-manifold without boundary.

Theorem. If M is a locally euclidean n-dimensional space with the property that each pair of points lies interior to some n-ball, then M is an open n-cell if and only if M is pseudo-isotopically contractible.

Lemma. If M is pseudo-isotopically contractible and p is a point of M, the function $r(x, t)$ may be chosen so that $r(A, 1) = p$.

Proof. Let U be the interior of a ball containing p and q. Suppose U is given a co-ordinate system (x_1, \ldots, x_n), where $x_1^2 + \cdots + x_n^2 < 1$ and $(x_1, \ldots, x_n) \in \overline{U} \setminus U$ if and only if $x_1^2 + \cdots + x_n^2 = 1$.

Let $0 < \epsilon < 1$; then the mapping

$$x'_1 = x_1 + \epsilon t, \quad 0 \leq t \leq 1,$$

$$x'_i = x_i, \quad i > 1,$$

Received by the editors November 19, 1963.
where p is the distance from (x_1, \ldots, x_n) to $\overline{U} \setminus U$, defines an isotopy of U on itself that is fixed on $\overline{U} \setminus U$ and carries the origin into $(\epsilon, 0, 0, \ldots, 0)$.

The composition of a finite number of such isotopies will give the desired result.

Proof of the Theorem. Since M is locally separable and connected, it is separable. Since M is also locally compact, $M = \bigcup_i A_i$, where A_i is compact and $A_{i+1} \supset A_i$. Let B_i denote the closure of the spherical $1/i$ neighborhood of p.

To each $i = 1, 2, \ldots$, there is a continuous function $r(x, t; i)$ on $M \times [0, 1]$ that is a homeomorphism onto for $t < 1$, and, for $t = 1$, A_i is contracted to p. Let us choose $t_i < 1$ such that $r(x, t; i)$ shrinks $A_i \times t_i$ to a subset of the interior of B_i. Suppose $r^{-1}(x, t_i; i)$ maps B_i onto E_i. Then E_i is an open n-cell and $M = \bigcup_i E_i$. For, if $q \in M$, $q \in A_j$ for some j. Then $r(x, t_j; j)$ carries q onto q^1 in B_j and $r^{-1}(x, t_j; j)$ carries q^1 back onto q.

By a recent result of M. Brown, M must be homeomorphic to euclidean n-space, E^n [1].

Reference

University of Tennessee