Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strong ratio limit property for $ R$-recurrent Markov chains


Author: William E. Pruitt
Journal: Proc. Amer. Math. Soc. 16 (1965), 196-200
MSC: Primary 60.65
DOI: https://doi.org/10.1090/S0002-9939-1965-0174089-0
MathSciNet review: 0174089
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] K. L. Chung, Markov chains with stationary transition probabilities, Springer, Berlin, 1960. MR 0116388 (22:7176)
  • [2] C. Derman, A solution to a set of fundamental equations in Markov chains, Proc. Amer. Math. Soc. 5 (1954), 332-334. MR 0060757 (15:722h)
  • [3] W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1950. MR 0038583 (12:424a)
  • [4] A. Garsia, S. Orey and E. Rodemich, Asymptotic behavior of successive coefficients of some power series, Illinois J. Math. 6 (1962), 620-629. MR 0142947 (26:514)
  • [5] S. Karlin and J. McGregor, Random walks, Illinois J. Math. 3 (1959), 66-81. MR 0100927 (20:7352)
  • [6] D. G. Kendall, Unitary dilations of Markov transition operators, and the corresponding integral representation for transition-probability matrices, Harold Cramér Volume (U. Grenander, Ed.), Almquist and Wiksell, Stockholm, 1960; pp. 139-161. MR 0116389 (22:7177)
  • [7] S. Orey, Strong ratio limit property, Bull. Amer. Math. Soc. 67 (1961), 571-574. MR 0132600 (24:A2440)
  • [8] D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser. (2) 13 (1962), 7-28. MR 0141160 (25:4571)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60.65

Retrieve articles in all journals with MSC: 60.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1965-0174089-0
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society