

University of Minnesota

A REPRESENTATION THEOREM FOR CONTINUOUS FUNCTIONS OF SEVERAL VARIABLES

DAVID A. SPRECHER

Let E^n denote the n-dimensional unit cube in Euclidean space; designate the closed unit interval, $[0, 1]$, by E. We prove in this note the following

Theorem. For any natural number n, $n \geq 2$, there exist real, monotonic increasing functions, $h^p(x)$, $1 \leq p \leq n$, dependent on n, and having the following properties:

(i) The function

$$
\sum_{1 \leq p \leq n} h^p(x_p)
$$

separates all points of E^n:

$$
\sum_{1 \leq p \leq n} h^p(x_p) \neq \sum_{1 \leq p \leq n} h^p(y_p)
$$

unless $x_p = y_p$ for all admitted values of p.

(ii) Every continuous function of n variables, $f(x_1, \cdots, x_n)$, with domain E^n, can be represented in the form

$$
f(x_1, \cdots, x_n) = g \left[\sum_{1 \leq p \leq n} h^p(x_p) \right].
$$

Clearly, the function g will, in general, be discontinuous.

Received by the editors September 16, 1963.

This note is part of the author's Ph.D. thesis (University of Maryland, 1963, directed by A. Douglis); its research was supported by the United States Air Force through the AFOSR under Contract No. AF 49(638)-590.
As shown by V. I. Arnol'd [1], even a simple function such as \(f(x, y) = xy \) cannot be represented in the form (1) if the functions \(g \) and \(h^p \) are required to be continuous.

Proof. We represent the real numbers in the interval \(E \) to the base \(n \):

\[
(2) \quad x = \sum_{1 \leq s < n} s_n \cdot n^{-s},
\]

where \(s_n \) is an index with domain \(0 \leq s_n \leq n - 1 \) for each \(v \). To have a one-to-one correspondence between the real numbers, \(x \in E \), and the infinite series (2), we normalize (2) by requiring that for no \(N > 1 \) is \(s_n = n - 1 \) for all \(v \geq N \), except when \(s_n = n - 1 \) for all \(v \).

To prove (i), we set for each admitted \(p \)

\[
(3) \quad x_p = \sum_{1 \leq s < n} s_{pv} \cdot n^{-s},
\]

where \(0 \leq s_{pv} \leq n - 1 \), the \(s_{pv} \) being subject to the normalizing restriction just described, and define the functions

\[
(4) \quad h^p(x_p) = \sum_{1 \leq s < n} s_{pv} \cdot n^{-n - p + 1}.
\]

Clearly, (4) is a representation of real numbers in \(E \) to the base \(n^p \). By their construction, the functions \(h^p(x) \) are monotonic increasing and bounded for \(x \in E \) (and hence, continuous almost everywhere).

Let \(p \) be fixed; consider an infinite sequence \(\{s_{pv}\} \); this sequence determines simultaneously unique numbers \(x_p \) and \(h^p(x_p) \). It follows that the correspondence

\[
(5) \quad x_p \leftrightarrow h^p(x_p)
\]

is one-to-one for each admitted \(p \).

Let us write

\[
(6) \quad \sum_{1 \leq s < n} h^p(x_p) = n^{1-n} \sum_{1 \leq s < n} t_s \cdot n^{-n},
\]

where

\[
(7) \quad t_s = \sum_{1 \leq s < n} s_{pv} \cdot n^{n-p}.
\]

We first show that the normalizing restriction imposed on the \(s_{pv} \) carries with it the analogous restriction for the \(t_s \), proving thereby
that the right side of (6) is a unique representation of real numbers to the base n^n. That is, we demonstrate that $t \prec n^n - 1$ for infinitely many v, unless $t, = n^n - 1$ for all v.

The specified domain of the s_{pv} is $0 \leq s_{pv} \leq n - 1$; accordingly we have

\begin{equation}
0 \leq \sum_{1 \leq p \leq n} s_{pv} \cdot n^{-p} \leq (n - 1) \sum_{1 \leq p \leq n} n^{-p} = n^n - 1.
\end{equation}

Since $s_{pv} < n - 1$ for infinitely many v,

$$t_\nu = \sum_{1 \leq p \leq n} s_{pv} \cdot n^{-p} < n^n - 1$$

for infinitely many ν, unless $s_{pv} = n - 1$ for all values of p and ν.

To complete the proof of (i) it remains, therefore, only to show that the correspondence

\begin{equation}
(x_1, \ldots, x_n) \rightarrow \sum_{1 \leq p \leq n} h^p(x_p)
\end{equation}

is one-to-one. We demonstrate, namely, that the right side of (6) determines a unique point in E^n:

Let

$$\sum_{1 \leq p \leq n} h^p(y_p) = n^{1-n} \sum_{1 \leq r \leq \infty} t'_r \cdot n^{-nr};$$

if

\begin{equation}
\sum_{1 \leq p \leq n} h^p(x_p) = \sum_{1 \leq p \leq n} h^p(y_p),
\end{equation}

then $t_\nu = t'_\nu$ for all values of ν.

By the definition of the summands in (10), this equation is equivalent to the statement that

$$t_1 - t'_1 = \sum_{2 \leq r \leq \infty} (t'_r - t_r) \cdot n^{-nr} = \alpha,$$

where $|\alpha| \leq 1$, as shown with a simple calculation. That this inequality is strict follows from the fact that $|\alpha| = 1$ if and only if $|t'_r - t_r| = n^n - 1$ for all $r \geq 2$, and then, according to the normalizing restriction, $|t'_r - t_r| = n^n - 1 = 1$. The last equality is clearly impossible.

We now prove the assertion made, that $t_\nu = t'_\nu$ for all ν, by induction on ν. Since $|\alpha| < 1$ and the difference $|t'_r - t_r|$ is integral or zero,
it follows that $\alpha = 0$ and, hence, $t_i = t'_i$. Suppose now that $t_i = t'_i$ for all $i \leq k$, where $k \geq 1$. Then equation (10) is equivalent to the statement that

$$t_{k+1} - t'_{k+1} = \sum_{k+2 \leq p \leq \infty} (t'_i - t_i) \cdot n^{n(k+1-r)} = \alpha',$$

where $|\alpha'| \leq 1$. The above reasoning shows that inevitably $t_{k+1} = t'_{k+1}$, thereby completing the induction.

Now let

$$t'_i = \sum_{1 \leq p \leq n} s'_{ip} \cdot n^{n-p};$$

the relation $t_i = t'_i$ permits us to write

$$0 \leq s_{nr} = s'_{nr} + \left[n \cdot \sum_{1 \leq p \leq n-1} (s'_{ip} - s_{ip}) \cdot n^{n-p-1} \right] \leq n - 1.$$

Since s'_{ip} is non-negative, and the expression in brackets is an integral multiple of n, this is impossible, unless $s_{ip} = s'_{ip}$ for all admitted values of p. This shows that $t_i \neq t'_i$ unless $s_{ip} = s'_{ip}$ for all p, and hence the correspondence (9) is one-to-one.

The correspondence (9) maps the unit cube, E^n, onto the closed interval $[0, n^{1-n}]$, in a one-to-one manner. To each point

$$y = \sum_{i \leq p \leq n} h(x_p)$$

in this interval, the assignment $g(y) = f(x_1, \ldots, x_n)$, therefore, is defined uniquely. The function g is that demanded in part (ii) of our theorem.

Bibliography

1. V. I. Arnol'd, *On the representability of a function of two variables in the form $\chi[\phi(x) + \psi(y)]$*, Uspehi Mat. Nauk. 12 (1957), no. 2(74), 119–121. (Russian)