AN EXTENSION OF TATE'S THEOREM ON COHOMOLOGICAL TRIVIALITY

L. Evens

Let G be a finite group and $f: A \rightarrow B$ a homomorphism of G-modules. In one form, Tate's theorem says that if, for some r and all subgroups U of G, $\hat{H}^{r-1}(U, f)$ is a surjection, $\hat{H}^r(U, f)$ is an isomorphism, and $\hat{H}^{r+1}(U, f)$ is an injection, then $\hat{H}^n(U, f)$ is an isomorphism for all U and all n. Whaples has asked if the modification of this theorem stated below is true, and this paper answers Whaples' question affirmatively.

Theorem. If, for some integer r and every subgroup U of the finite group G, $\hat{H}^r(U, f)$ and $\hat{H}^{r+1}(U, f)$ are isomorphisms, then $\hat{H}^n(U, f)$ is an isomorphism for every n and every subgroup U.

Proof. By the Sylow subgroup argument in cohomology of finite groups it is sufficient to prove the theorem for p-groups. For p-groups we proceed by induction. For the trivial group the theorem is clear, so let G be a nontrivial p-group and assume the truth of the theorem for p-groups of lower order. We prove below that $\hat{H}^n(U, f)$ is an isomorphism for all U and all $n \leq r + 1$. The proof for $n \geq r$ is analogous. By dimension shifting we may assume $r = -3$, that is, that $H_3(U, f)$ and $H_4(U, f)$ are isomorphisms for all U. (I mean the ordinary homology groups.) Let H be a maximal subgroup of G. We have the following commutative diagram with obvious vertical arrows.

$$
\begin{array}{cccccc}
H_1(G/H, H_1(H, A)) & \rightarrow & K_2(A) & \rightarrow & H_2(G/H, A_H) & \rightarrow & H_1(H, A) \rightarrow H_1(G, A) \rightarrow H_1(G/H, A_H) \rightarrow 0 \\
1 & \downarrow & 1 & \downarrow & 1 & \downarrow & 1 \\
H_1(G/H, H_1(H, B)) & \rightarrow & K_2(B) & \rightarrow & H_2(G/H, B_H) & \rightarrow & H_1(H, B) \rightarrow H_1(G, B) \rightarrow H_1(G/H, B_H) \rightarrow 0,
\end{array}
$$

where $K_2(A) = \text{Coker}(\iota_\ast: H_2(H, A) \rightarrow H_2(G, A))$, $\iota: H \rightarrow G$ being the inclusion.

To make clear what the horizontal maps are, and to prove the rows exact, we make use of the homology spectral sequence

$$H_p(G/H, H_q(H, A)) \Rightarrow H_{p+q}(G, A).$$

The latter is completely dual to the usual Hochschild-Serre spectral sequence, and the edge homomorphisms $H_p(G, A) \rightarrow H_p(G/H, A_H)$

Received by the editors May 3, 1963.

1 Supported by National Science Foundation Grant G-24943.

289
and $H_q(H, A) \to H_q(G, A)$ are induced respectively by the obvious arrows $G \to G/H$ and $i: H \to G$. The exactness, then, at the last four places is just dual to the exactness of the so-called fundamental exact sequence in the cohomology of groups. The exactness at the second place and the definition of arrow (\ast) are derived from a slightly subtler analysis of the spectral sequence. (This remark—whose analogue holds for cohomology—was first pointed out to me by G. P. Hochschild.) Simply, if

$$0 \subset F_0 \subset F_1 \subset F_2 = H_2(G, A)$$

is the filtration associated with the spectral sequence, then $F_2/F_0 = H_2(G, A)/\text{Im} \{ i_\ast: H_2(H, A) \to H_2(G, A) \} = K_2(A)$ and $F_1/F_0 = E_{2,1}^2$.

The latter, however, is a homomorphic image of $E_{2,1}^2 = H_1(G/H, H_1(H, A))$ since $d_{2,1}^1 = 0$.

By hypothesis the arrows (1), (4), (5) are isomorphisms. Moreover, there is the following commutative diagram with exact rows.

$$
\begin{array}{ccc}
H_2(H, A) & \to & H_2(G, A) \\
\downarrow (1) & & \downarrow (8) \\
\downarrow (7) & & \downarrow (2) \\
H_2(H, B) & \to & H_2(G, B) \\
\end{array}
$$

Since arrows (7), (8) are isomorphisms, so is (2). By two applications of the Five Lemma, arrows (3), (6) are isomorphisms. Thus since G/H is cyclic, $H_n(G/H, f_\ast)$ is an isomorphism for all $n \geq 1$.

By the induction hypothesis we may assume that $H_n(U, f)$ is an isomorphism for all proper subgroups U (in particular, for H), and for all $n \geq 1$. Hence it suffices to show that $H_n(G, f)$ is an isomorphism for all $n \geq 1$. To see this consider the morphism of homology spectral sequences induced by f. For the E^2 terms this gives arrows

$$H_p(G/H, H_q(H, A)) \to H_p(G/H, H_q(H, B))$$

which are isomorphisms for $(p, q) \neq (0, 0)$. This is true by the inductive hypothesis if $q > 0$, and it is what is proved above for $q = 0$. It now follows that the morphism of spectral sequences is an isomorphism, and the induced morphisms $H_n(G, f) (n > 0)$ at the end of the spectral sequence are isomorphisms. This completes the proof of the theorem.

Remarks. 1. The above theorem implies the theorem on cohomological triviality of modules. If $\hat{H}^\alpha(U, A)$ vanishes in two successive dimensions for all subgroups U, apply the above theorem to the zero morphism of A onto 0. Since this and Tate's theorem are equivalent, we have yet another proof of Tate's theorem.
2. Let \(\hat{H}^n(U, A) \cong \hat{H}^n(U, B) \) in two successive dimensions and for all subgroups but do not assume the isomorphisms induced by a module homomorphism. It would not be reasonable to expect isomorphisms for all \(n \) and all subgroups. The following counterexample justifies our pessimism. Let \(G = G_p(a, b: a^3 = b^7 = 1, aba^{-1} = b^2) \); let \(A \) be \(\mathbb{Z} \) with trivial action and \(B \) the result of dimension shifting down two steps. Then \(\hat{H}^q(G, A; 7) = \hat{H}^{q-2}(G, B; 7) = 0 \) for \(q = 1, 2, 3, 4, 5 \) and \(\hat{H}^4(G, A; 7) = \hat{H}^4(G, B; 7) \neq 0 \).

University of California, Berkeley

QUASI-INVERTIBLE PRIME IDEALS

H. S. BUTTS

In this note \(R \) will denote a commutative ring with unit and a proper ideal of \(R \) is an ideal of \(R \) different from \((0)\) and \(R \). Nakano has shown that \(R \) is a Dedekind domain, provided that every proper prime ideal of \(R \) is invertible [1]. In [2], Krull defines a prime ideal \(P \) to be quasi-invertible provided \(PP^{-1} > P \), where \(> \) denotes proper containment and \(P^{-1} \) is the set of elements \(x \) in the total quotient ring of \(R \) such that \(xP \subset R \). The purpose of this note is to prove that Nakano's result remains valid when invertible is replaced by quasi-invertible. Examples are known of rank-two valuation rings in which the maximal ideal is invertible—hence, in Nakano's result, prime cannot be replaced by maximal.

Lemma. If \(P \) is an invertible prime ideal in \(R \) then \(\cap_n P^n \) is a prime ideal.

Proof. The proof is the same as that of the first part of Theorem 4 of [1].

Theorem. If every proper prime ideal of \(R \) is quasi-invertible, then \(R \) is a Dedekind domain.

Proof. If \(R \) is a field there is nothing to prove. Let \(M \) be an arbitrary proper maximal ideal of \(R \) and denote by \(R_M \) the quotient ring of \(R \) with respect to \(M \) (see [3, pp. 218–228]). Let \(N \) denote the ideal consisting of the elements \(x \in R \) such that there exists an element \(m \in M \) such that \(mx = 0 \). Let \(h \) be the natural homomorphism from

Received by the editors November 4, 1963.