A TOTALLY BOUNDED, COMPLETE UNIFORM SPACE IS COMPACT

D. L. FRANK

Let X be a set and U a uniformity on X. We will show that if
(X, U) is totally bounded, every net in X has a Cauchy subnet. For
each $d \in U$, let S_0^d, \ldots, S_k^d be a finite covering of X by d-spheres.
Let T_d be the topology on X having S_0^d, \ldots, S_k^d as its subbasis.
Clearly the space (X, T_d) is compact. Therefore, $Y = \prod_{d \in U} (X, T_d)$ is
compact.

Now, let (ρ_i) be a net in X. Then $\Delta \circ (\rho_i)$ is a net in Y, where
$\Delta: X \to Y$ is the diagonal. By compactness, there exists a convergent
subnet, (q_j), of $\Delta \circ (\rho_i)$. Then $\Delta^{-1} \circ (q_j)$ is a subnet of (ρ_i) which
is clearly Cauchy.

Thus, if (X, U) is also complete, every net in X has a convergent
subnet, so (X, U) is compact.

COLUMBIA UNIVERSITY

Received by the editors March 12, 1964.