DIFFERENTIABLE ACTIONS OF COMPACT
ABELIAN LIE GROUPS ON S^n

L. N. MANN

1. Introduction. In [9] P. A. Smith raises the following question: If a finite group G acts effectively on the n-sphere S^n, must there also be some effective orthogonal action of G on S^n? Stated another way, must all finite groups acting effectively on S^n be isomorphic to subgroups of the orthogonal group $O(n+1)$? Smith has answered this question in the affirmative for the case where G is an elementary p-group [8], [9]. The Corollary to Theorem 2 of this paper settles the case where G is a compact abelian Lie group (in particular, a finite abelian group) and the action is assumed differentiable.

The proof of our main result is immediate if one assumes the existence of a fixed point, as evidenced by the following result which utilizes Bochner’s theorem on local linearity about a fixed point.

Theorem 1. Let G be a compact Lie group operating effectively and differentiably on a differentiable n-manifold X. If there exits a point x_0 left fixed by every element of G, then G is isomorphic to a subgroup of $O(n)$.

Proof. By Bochner’s theorem [5, p. 206], we may assume G acts orthogonally (but not necessarily effectively) on some small closed n-cell D with center x_0. G leaves bdy $D = S^{n-1}$ invariant. If G is not effective on S^{n-1}, then there must be a homeomorphism g_0 of finite order in G which leaves S^{n-1} pointwise fixed. Since g_0 acts linearly on D and leaves x_0 fixed, it must also leave D pointwise fixed. By Newman’s theorem [5, p. 223], g_0 must leave X pointwise fixed, violating the effectiveness of G on X. Hence G acts orthogonally and effectively on S^{n-1}, and the theorem follows.

Received by the editors March 10, 1964.
2. Definitions and preliminaries. An action of a transformation group G on a space X is said to be effective if $gx = x$ for all x in X implies $g = e$, the identity element of G. All spaces considered will be compact Hausdorff spaces and the usual Čech cohomology will be used. Let \mathbb{Z}_p denote the additive group of integers modulo a prime p. Our definition of a cohomology n-manifold over \mathbb{Z}_p and of cohomology dimension over \mathbb{Z}_p will be that given in [1]. An elementary p-group of rank k is a group isomorphic to the direct sum of k copies of \mathbb{Z}_p. Smith [7] has shown that if an elementary p-group G acts effectively on a connected cohomology n-manifold X over \mathbb{Z}_p, then each component of $F(G, X)$, the fixed-point set of G on X, is a connected cohomology r-manifold over \mathbb{Z}_p with $r < n$ for each r. In fact, if p is an odd prime, each $n - r$ must be even. A generalized cohomology n-sphere over \mathbb{Z}_p is a cohomology n-manifold over \mathbb{Z}_p which has the global cohomology, coefficient group \mathbb{Z}_p, of S^n. Results of Smith [6], [7] show that if an elementary p-group G acts effectively on a generalized cohomology n-sphere X over \mathbb{Z}_p, then $F(G, X)$ is a generalized cohomology r-sphere over \mathbb{Z}_p, $r < n$. We shall need the following result from [3]:

Lemma 1. Let G be an elementary p-group of rank k acting effectively on a connected n-manifold X. Suppose $F(G, X)$ is nonempty and of cohomology dimension r. Then

$$k \leq \begin{cases} \frac{n - r}{2} & \text{for } p \neq 2, \\ n - r & \text{for } p = 2. \end{cases}$$

3. Main results.

Theorem 2. Let G be isomorphic to the direct sum of k copies of \mathbb{Z}_2 and l copies of \mathbb{Z}_{2p}, p an odd prime. If G acts effectively and differentiably on S^n, then

$$k + 2l \leq n + 1.$$

Proof. By the above-mentioned Smith result [8], [9], we may assume $k, l \geq 1$. We shall suppose $k + 2l = n + 2$ and arrive at a contradiction.

There exists a subgroup H of G which is an elementary 2-group of rank $k + l$. We consider the action of H on S^n. As usual, the isotropy subgroup of H at a point x in X is defined as the subgroup of H consisting of all elements which leave x fixed. By the results of [8] or [4], there must exist an isotropy subgroup H_1 of H of rank $k + l - 1$. Since H_1 is an isotropy subgroup, $F(H, X)$ must be a proper subset
of \(F(H, X) \). Proceeding inductively, we may construct the following two decompositions

\[
\begin{align*}
(1) & \quad H = H_0 \supset H_1 \supset \cdots \supset H_{k+l-1} \supset H_{k+1} = e, \\
(2) & \quad \emptyset \subseteq F_0 \subseteq F_1 \subseteq \cdots \subseteq F_{k+l-1} \subseteq F_{k+1} = S^n,
\end{align*}
\]

where

(i) \(H_i, 0 \leq i \leq k+l, \) is a subgroup of \(H \) of rank \(k+l-i \) which operates on \(S^n \) with fixed-point set \(F_i \).

(ii) Each \(F_i \) is a generalized cohomology sphere over \(\mathbb{Z}_2 \).

(iii) Each \(F_i \) is a compact manifold. This fact follows from the differentiability of the action by applying Bochner's theorem. Moreover, by (ii), each \(F_i \) of positive dimension is connected.

(iv) \(\dim F_i < \dim F_{i+1}, 0 \leq i \leq k+l-1. \)

We proceed to investigate the decomposition (2) of \(S^n \). From \(\emptyset \) to \(S^n \), there are exactly \((n+2) - (k+l+1) = l-1 \) gaps in dimension, that is, dimensions not assumed by the \(F_i \)'s. It follows that \(\dim F_{i_0} \) is even (including 0) for some \(i_0 \), with \(\dim F_{i_0} \leq 2l-2 \); for, otherwise, there would have to be at least \(l \) gaps. Select then the first \(i_0 \) with \(\dim F_{i_0} \) even. As \(k \geq 1 \), we have \(\dim F_{i_0} \leq 2l-2 < n. \)

There exists a subgroup \(K \) of \(G \) which is an elementary \(p \)-group of rank \(l \). The action of \(K \) on \(S^n \) leaves \(F_{i_0} \) invariant. Since \(F_{i_0} \) is a generalized cohomology sphere over \(\mathbb{Z}_2 \), the Euler characteristic, \(\chi(F_{i_0}) \), of \(F_{i_0} \), which is independent of the coefficient field, must be equal to 2. Hence, \(\chi(F_{i_0}) \) is not congruent to 0 modulo \(p \), and by an easy extension of Floyd's result in [2] to actions of elementary \(p \)-groups, the action of \(K \) on \(F_{i_0} \) must have a fixed point. By Lemma 1, there exists a subgroup \(T \) of \(K \) such that each element of \(T \) leaves \(F_{i_0} \) pointwise fixed and such that \(K/T \) is effective on \(F_{i_0} \) with

\[
\Gamma(K/T) = \text{rank } (K/T) \leq \frac{\dim F_{i_0}}{2}.
\]

We shall say that \(T \) is completely noneffective on \(F_{i_0} \). Now

\[
\Gamma(T) \geq \Gamma(K) - \frac{\dim F_{i_0}}{2} = l - \frac{\dim F_{i_0}}{2} \geq l - \frac{2l-2}{2} = 1.
\]

We next construct a decomposition of \(T \),

\[
\begin{align*}
(3) & \quad T = T_{i_0} \supsetneq T_{i_0+1} \supsetneq \cdots \supsetneq T_{k+1} \supsetneq e,
\end{align*}
\]

such that \(T_j, i_0 \leq j \leq k+l, \) is completely noneffective on \(F_j \). As \(T_{k+1} \) is a nontrivial subgroup of \(G \) which is noneffective on \(F_{k+1} = S^n \), we obtain a contradiction to the effectiveness of \(G \).
We proceed with the construction of (3). Now at least \((\dim F_i) / 2\) gaps have been used in arriving to \(F_{i_0}\) in (2). Therefore there exist at most

\[
(l - 1) - \frac{\dim F_{i_0}}{2}
\]
gaps from \(F_i\) to \(F_{k+1}\) in (2). Let \(N = \dim F_{i_0} - \dim F_i\) and consider the following two cases.

(i) \(N = 1\). Now \(T\) leaves the compact connected manifold \(F_{i_0+1}\) invariant with fixed-point set containing \(F_i\). Since \(N = 1\) and each element of \(T\) is of prime order \(p\), \(p\) odd, we have that \(T\) is completely noneffective on \(F_{i_0+1}\) due to above-mentioned parity restrictions. In this case, choose \(T_{i_0+1} = T\).

(ii) \(N \geq 2\). In this case, there are \(N - 1\) gaps from \(F_i\) to \(F_{i_0+1}\) in (2). Again, \(T\) leaves \(F_{i_0+1}\) invariant with fixed-point set \(F_i\) containing \(F_i\). By Lemma 1, there exists a subgroup \(T_{i_0+1}\) of \(T\) which is completely noneffective on \(F_{i_0+1}\) with

\[
\Gamma(T/T_{i_0+1}) \leq \frac{\dim F_{i_0+1} - \dim F_i}{2}
\]

\[
\leq \frac{\dim F_{i_0+1} - \dim F_{i_0}}{2} = \frac{N}{2}.
\]

Consequently,

\[
\Gamma(T_{i_0+1}) \geq \Gamma(T) - \frac{N}{2} \geq \Gamma(T) - (N - 1).
\]

We see that each gap results in reducing the rank of \(T\) to that of \(T_{i_0+1}\) by at most one.

Proceeding inductively, and recalling that there are at most

\[
(l - 1) - \frac{\dim F_i}{2}
\]
gaps from \(F_i\) to \(F_{k+1}\), we obtain

\[
\Gamma(T_{k+1}) \geq \Gamma(T) - \left[(l - 1) - \frac{\dim F_i}{2} \right]
\]

\[
\geq \left[l - \frac{\dim F_i}{2} \right] - \left[(l - 1) - \frac{\dim F_i}{2} \right] = 1.
\]

Corollary. Let \(G\) be a compact abelian Lie group acting effectively
and differentiably on S^n. Then G is isomorphic to a subgroup of $O(n+1)$.

Proof. G is the direct sum of a q-torus T^q and a finite abelian group R. Choose a minimal set of generators of R, let $g(R)$ denote the total number of these generators and $h(R)$ denote the number of these generators of order 2. Suppose, first, that $h(R) = 0$. Then there exists for some odd prime p a subgroup G' of G with G' an elementary p-group of rank $q + g(R)$. Then, by Smith [8], [9],

$$q + g(R) \leq \left\lfloor \frac{n + 1}{2} \right\rfloor$$

and the Corollary follows. Suppose then that $h(R) \geq 1$. Then there exists a subgroup G'' of G with G'' isomorphic to the direct sum of $h(R)$ copies of Z_2 and $[q + g(R) - h(R)]$ copies of Z_{2p}, for some odd prime p. The Corollary now follows from Theorem 2.

References

Institute for Defense Analyses and University of Virginia