Proof. If M is Ricci flat it is trivially Einstein and, since $L^g - HL = 0$, one of the principal curvatures is zero.

If $R^* = bI$, then $L^2 - HL + bI = 0$. If $K = 0$, then there is a zero principal curvature and a unit principal vector X with $LX = 0$. Hence $bX = 0$ so $R^* = 0$.

In the case $n = 3$, the characteristic polynomial $L^g - HL^2 + JL - KI = 0$ implies $JL = 0$, and since $L_m = 0$ implies $J(m) = 0$, we have $J = 0$.

Bibliography

University of Michigan

ON PSEUDOMETRICS FOR GENERALIZED UNIFORM STRUCTURES

SOLOMON LEADER

In [1] Alfsen and Njåstad generalized the concept of a uniform structure \mathcal{U} on a set S, replacing the intersection axiom for uniform structures by the weaker condition:

(0) Given subsets A_1, \cdots, A_n of S and U_1, \cdots, U_n in \mathcal{U}, there exists U in \mathcal{U} such that $U(A_i) \subseteq U_i(A_i)$ for $i = 1, \cdots, n$. Our object is to characterize these structures in terms of pseudometrics.

Define a (generalized) gage on S to be a nonvoid family \mathcal{G} of pseudometrics on $S \times S$ such that

(1) Every pseudometric uniformly continuous with respect to \mathcal{G} belongs to \mathcal{G}.

(2) If α and β belong to \mathcal{G} and both α and β are totally bounded, then $\alpha \vee \beta$ belongs to \mathcal{G}.

Note that if we delete the total boundedness condition in (2), then \mathcal{G} is just a gage for a proper uniform structure [2], [3]. For β a pseudometric on $S \times S$, define $W_\beta = \beta^{-1}[0, 1]$.

Theorem. Given a gage \mathcal{G} on S, define the class \mathcal{U} of subsets U of $S \times S$ by the condition

Received by the editors January 28, 1964.
(i) $U \subseteq \mathcal{U}$ if $U \supseteq W_\beta$ for some $\beta \in \mathcal{G}$.

Then \mathcal{U} is a generalized uniform structure for which

(ii) $\alpha \subseteq \mathcal{G}$ if $W_{n\alpha} \subseteq \mathcal{U}$ for every positive integer n.

Conversely, given a generalized uniform structure \mathcal{U} on S, define the family \mathcal{G} of pseudometrics α by (ii). Then \mathcal{G} is a gage for which (i) holds.

Lemma. Given a pseudometric α on $S \times S$ and nonempty subsets A and B of S such that $\alpha(A, B) \geq 1$, there exists a totally bounded pseudometric β such that $\beta \leq \alpha$ and $\beta(A, B) = 1$.

To prove the lemma, let $f(s) = \alpha(s, A) / [\alpha(s, A) + \alpha(s, B)]^{-1}$ on S and define $\beta(x, y) = |f(x) - f(y)|$. A few simple computations show that β has the desired properties.

To prove the theorem, let \mathcal{G} satisfy (1) and (2) and define \mathcal{U} by (i). That \mathcal{U} has all the properties of a uniform structure except for the intersection axiom follows exactly as in the case of proper uniform structures. To prove (0) we may, in view of (i), assume that $U_i = W_\alpha$ for some $\alpha_i = \alpha$ in \mathcal{G}. Let $B_i = S - U_i(A_i)$. Since the conclusion of (0) will be trivial wherever A_i or B_i is empty, we may assume both are nonempty. Apply the lemma to get β_i totally bounded with $\beta_i \leq \alpha_i$ and $\beta_i(A_i, B_i) = 1$. β_i is in \mathcal{G} by (1). Let $U = W_\beta$. Given y in $U(A_j)$, (x, y) is in U for some x in A_i. That is, $\beta_i(x, y) \leq \beta(x, y) < 1$ for some x in A_i. So $\beta_i(y, A_i) < 1$. Since $\beta_i(A_i, B_i) = 1$, y is not in B_i. That is, y is in $U_i(A_i)$. Thus (0) holds and \mathcal{U} is a generalized uniform structure.

To prove (ii), consider any α in \mathcal{G}. Then $n\alpha$ is in \mathcal{G} by (1) and hence $W_{n\alpha}$ is in \mathcal{U} by (i). Conversely, let $W_{n\alpha}$ belong to \mathcal{U} for all n. By (i) there exists for each n some β in \mathcal{G} such that $W_\beta \subseteq W_{n\alpha}$. Thus (1) implies α is in \mathcal{G}.

Given a generalized uniform structure \mathcal{U}, define \mathcal{G} by (ii). We must prove (1), (2), and (i). For β uniformly continuous relative to \mathcal{G} and m any positive integer, there exist α in \mathcal{G} and a positive integer n such that $W_{n\alpha} \subseteq W_{m\beta}$. Since $W_{n\alpha}$ belongs to \mathcal{U} by (ii), so does $W_{m\beta}$. So β is in \mathcal{G} by (ii). Hence (1) holds just as in the case of proper uniform structures.

To prove (2) let α and β be totally bounded members of \mathcal{G}. Let $\gamma = \alpha \vee \beta$. Since γ is totally bounded, we can get a finite covering $S_1 \cup \cdots \cup S_k = S$ with diameters $\gamma[S_i] < 1/4$. Applying (0) to the sequences

\[
\left\{S_1, \ldots, S_k, S_{1}, \ldots, S_{k}\right\}
\left\{W_{2\alpha}, \ldots, W_{2\alpha}, W_{2\beta}, \ldots, W_{2\beta}\right\}
\]

we get U in \mathcal{U} such that
Consider any \((x, y)\) in \(U\). Since \(x\) is in some \(S_i\), \(y\) is in the corresponding \(U(S_i)\). Hence (3) implies \(\gamma(y, S_i) < 3/4\). So \(\gamma(x, y) \leq \gamma(x, S_i) + \gamma[S_i] + \gamma(y, S_i) < 0 + 1/4 + 3/4 = 1\). That is, \(U \subseteq W_\gamma\). So \(W_\gamma\) belongs to \(\mathcal{U}\) whenever \(\alpha\) and \(\beta\) are totally bounded members of \(\mathcal{G}\). Using (1) we can apply this result to \(n\alpha\) and \(n\beta\) to conclude that \(W_{n\gamma}\) belongs to \(\mathcal{U}\). That is, \(\gamma\) is in \(\mathcal{G}\). So (2) holds.

To prove (i) let \(U\) be any member of \(\mathcal{U}\). Choose a sequence \(\{U_n\}\) in \(\mathcal{U}\) such that \(U_n = U_{n-1}\) and \(U_{n+1} \subseteq U_n \subseteq U\) for all \(n\). By the Metrization Lemma [3] there exists a pseudometric \(\beta\) such that

\[
 U_{n+1} \subseteq W_{\beta^{n+1}} \subseteq U_n \quad \text{for all } n.
\]

\(\beta\) is in \(\mathcal{G}\) by (4) and (ii). Setting \(n = 1\) in (4) yields \(W_\beta \subseteq U\) which proves the direct implication in (i). The converse follows from (ii) since \(W_\beta\) is in \(\mathcal{U}\) if \(\beta\) is in \(\mathcal{G}\).

Using the lemma and [4], we obtain the following corollaries.

Corollary 1. For a given proximity relation, let \(\mathcal{G}\) be the associated precompact gage and \(\mathcal{G}\) be the associated total [1] gage. Then \(\mathcal{G}\) consists of all pseudometrics \(\alpha\) on \(S \times S\) such that every totally bounded pseudometric \(\beta\) satisfying \(\beta \leq \alpha\) belongs to \(\mathcal{G}\).

Corollary 2. A gage \(\mathcal{G}\) is total iff \(\mathcal{G}\) contains every pseudometric \(\alpha\) for which every totally bounded pseudometric \(\beta\) satisfying \(\beta \leq \alpha\) belongs to \(\mathcal{G}\).

References

Rutgers, The State University