1. Introduction. The set $P(n)$ of all primes less than or equal to n has the obvious property that it contains exactly one multiple of each prime less than or equal to n. We use this partial description of $P(n)$ as a basis for the following.

Definition 1.1. An increasing sequence $\{a_1, \ldots, a_k\}$ of integers greater than 1 is a coprime chain iff it contains exactly one multiple of each prime equal to or less than a_k.

The following is a list of all coprime chains $\{a_1, \ldots, a_k\}$ with $a_k \leq 13$.

- \{2\};
- \{2,3\};
- \{3,4\};
- \{2,3,5\}, \{3,4,5\};
- \{5,6\};
- \{2,3,5,7\}, \{3,4,5,7\}, \{5,6,7\};
- \{3,5,7,8\};
- \{2,5,7,9\}, \{4,5,7,9\}, \{5,7,8,9\};
- \{3,7,10\}, \{7,9,10\};
- \{2,3,5,7,11\}, \{3,4,5,7,11\}, \{3,5,7,8,11\}, \{2,5,7,9,11\}, \{4,5,7,9,11\};
- \{5,7,8,9,11\}, \{5,6,7,11\}, \{3,7,10,11\}, \{7,9,10,11\};
- \{5,7,11,12\};
- \{2,3,5,7,11,13\}, \{3,4,5,7,11,13\}, \{3,5,7,8,11,13\}, \{2,5,7,9,11,13\};
- \{4,5,7,9,11,13\}, \{5,7,8,9,11,13\}, \{5,6,7,11,13\}, \{3,7,10,11,13\};
- \{7,9,10,11,13\}, \{5,7,11,12,13\}.

The notation $A(n)$, $B(n)$, etc., will be used to designate coprime chains having n as largest member.

In this paper we are mainly concerned with finding functions asymptotic to the sum of the rth powers of the members of a coprime chain $A(n)$. A later paper will deal with the number of coprime chains with largest member n.

All assumed results are well known and can be found in [1].
2. The sum of powers of members of a coprime chain. The brief table of coprime chains given in the introduction suggests that a coprime chain \(A(n) \) has, asymptotically, \(\pi(n) \) members. We will prove a stronger theorem but we first require the

Lemma 2.1.

\[
\sum_{p \leq n} p^r \sim \frac{n^{r+1}}{(r + 1) \log n}, \quad r > -1.
\]

Proof. We note that for \(r = 0 \) this result is just the prime number theorem. For \(r > -1 \) partial summation gives

\[
\sum_{p \leq n} p^r = \pi(n)n^r - r \int_2^n \pi(t)t^{r-1} dt.
\]

But, since

\[
\int_2^n \pi(t)t^{r-1} dt \sim \int_2^n \left(\frac{1}{\log t} - \frac{1}{(r+1) \log^2 t} \right) dt \sim \frac{n^{r+1}}{(r + 1) \log n},
\]

we have the desired result.

Theorem 2.2.

\[
\sum_{a \in A(n)} a^r = \sum_{p \leq n} p^r + O\left(\frac{n^{(c+1)/2}}{\log n} \right),
\]

where \(c = 1 \) for \(-1 < r \leq 0 \) and \(c = 2 \) for \(r > 0 \).

Proof. Partition \(A(n) \) into the sets \(P = \{ p \in A(n) \mid p \text{ is prime} \} \) and \(M = A(n) - P \). Then

\[
\sum_{a \in A(n)} a^r = \sum_{p \leq n} p^r - \sum_{p \in P, \; p \leq \sqrt{n}} p^r + \sum_{m \in M} m^r.
\]

Each member of \(M \) is divisible by some prime less than or equal to \(\sqrt{n} \) and, since the members of \(M \) are coprime in pairs, \(M \) has at most \(\pi(\sqrt{n}) \) members.

(i) Assume \(-1 < r \leq 0\). For each \(m \) in \(M \) choose a prime divisor \(q \) of \(m \). Then

\[
\sum_{m \in M} m^r \leq \sum_{m \in M} q^r \leq \sum_{p \leq \sqrt{n}} p^r = O\left(\frac{n^{(r+1)/2}}{\log n} \right)
\]

by Lemma 2.1.
To complete the proof of this part of the theorem we note that there are at most \(\pi(\sqrt{n}) \) primes \(p \) satisfying \(\sqrt{n} < p \leq n \). Thus

\[
\sum_{p \leq n; p \in \mathbb{P}} p^r \leq \sum_{p \leq \sqrt{n}} p^r + \sum_{\sqrt{n} < p \leq n; p \in \mathbb{P}} p^r = O\left(\frac{n^{(r+1)/2}}{\log n}\right).
\]

(ii) Assume \(r > 0 \). Choose \(n_0 > 2^{2/r} \). Then, for \(n > n_0 \),

\[
\sum_{p \leq n} p^r - \sum_{p \leq n} p^r = \sum_{\sqrt{n} < p \leq n} \frac{p^r}{(r+1) \log n}, \quad a^r \leq \sum_{p \leq n} p^r + \sum_{m \in M} m^r.
\]

Now

\[
\sum_{m \in M} m^r \leq n^r \pi(\sqrt{n}) = O\left(\frac{n^{(r+1)/2}}{\log n}\right)
\]

and

\[
\sum_{p \leq n} p^r = O\left(\frac{n^{(r+1)/2}}{\log n}\right), \quad \text{which gives} \quad \sum_{p \leq n} p^r = O\left(\frac{n^{(r+1)/2}}{\log n}\right).
\]

This completes the proof of the theorem.

Applying Lemma 2.1 to the above result we obtain the

Corollary 2.3.

\[
\sum_{a \in A(n)} a^r \sim \frac{n^{r+1}}{(r+1) \log n}, \quad r > -1.
\]

As the next theorem shows, Theorem 2.2 is the best possible, in that no error term of lower order will suffice.

Theorem 2.4. For all sufficiently large \(n \), there exist coprime chains \(A(n) \) and \(B(n) \) such that

\[
\left| \sum_{a \in A(n)} a^r - \sum_{b \in B(n)} b^r \right| \leq \frac{c_1 n^{(r+1)/2}}{\log n},
\]

where \(c \) is defined as in Theorem 2.2 and \(c_1 \) is a constant depending on \(r \) only and is positive for \(-1 < r \neq 0\).

Proof. Let \(\{q_1, \ldots, q_{k-1}\} \) be the set of primes less than \(n \) and not dividing \(n \). Let \(a_i = q_i \log n / \log q_i \), \(b_i = q_i \), \(i = 1, \ldots, k-1 \), \(a_k = b_k = n \). Then \(A(n) = \{a_1, \ldots, a_k\} \) and \(B = \{b_1, \ldots, b_k\} \) are both coprime chains.

(i) Assume \(-1 < r < 0\). Then
\[
\left| \sum_{a \in A(n)} a^r - \sum_{b \in B(n)} b^r \right|
= \sum_{p < n} p^r - \sum_{p \in n} p^r - \sum_{p < n} p^r[\log n/\log p] + \sum_{p | n} \frac{\log n}{\log p}
\]
\[
\geq \sum_{p \in \sqrt[n]{n}} p^r - \sum_{p \in n} p^r - \sum_{p \in \sqrt[n]{n}} p^r[\log n/\log p]
\]
\[
\geq \frac{1 + o(1)}{\log n} \frac{n^{(r+1)/2}}{r + 1} - \sum_{\sqrt[n]{n}} 1 - \sum_{p \in \sqrt[n]{n}} p^r[\log n/\log p - 1]
\]
\[
\geq \frac{2(1 + o(1))}{\log n} \frac{n^{(r+1)/2}}{r + 1} - \sum_{p \in \sqrt[n]{n}} n^r p^{-\frac{r}{2}} = \left\{1 + o(1)\right\} \frac{-4r}{1 - r^2} \frac{n^{(r+1)/2}}{\log n}
\]

(ii) Assume \(r > 0 \). Then
\[
\left| \sum_{a \in A(n)} a^r - \sum_{b \in B(n)} b^r \right|
\geq \sum_{p \in \sqrt[n]{n}} p^r[\log n/\log p] - \sum_{p \in n} p^r[\log n/\log p] - \sum_{p \in \sqrt[n]{n}} p^r
\]
\[
\geq \sum_{p \in \sqrt[n]{n}} p^r - \sum_{\sqrt[n]{n}} n^r - O\left(\frac{n^{(r+1)/2}}{\log n}\right)
\]
\[
\geq \left\{1 + o(1)\right\} \frac{n^{r+1/2}}{(r + \frac{1}{2}) \log n} + O(n^r \log n) + O(n^{(r+1)/2})
\]
\[
= \left\{1 + o(1)\right\} \frac{2}{2r + 1} \frac{n^{r+1/2}}{\log n}
\]

The above theorem is also valid for \(r = 0 \), as will be shown in Theorem 3.5.

The first major difference between coprime chains and sets of consecutive primes becomes apparent in the following

Theorem 2.5. If, for each \(n \), coprime chains \(A(n) \) and \(B(n) \) are chosen so that \(\sum_{a \in A(n)} 1/a \) and \(\sum_{b \in B(n)} 1/b \) are maximal and minimal, respectively, then

\[
\sum_{a \in A(n)} \frac{1}{a} \sim \log \log n \quad \text{and} \quad \sum_{b \in B(n)} \frac{1}{b} \to \log 2 \quad \text{as} \quad n \to \infty.
\]

Proof. Clearly \(A(n) - \{n\} \) is the set of primes less than \(n \) that do not divide \(n \). Hence
\[
\sum_{a \in A(n)} \frac{1}{a} = \sum_{p \mid n} \frac{1}{p} - \sum_{p \mid n} \frac{1}{p} + \frac{1}{n} = \log \log n - \sum_{p \mid n} \frac{1}{p} + O(1).
\]

Since \(n \) has no more than \(2 \log n \) distinct prime divisors, it follows that

\[
\sum_{p \mid n} \frac{1}{p} = O(\log \log^2 n),
\]

for all sufficiently large \(n \). Thus

\[
\sum_{a \in A(n)} \frac{1}{a} \sim \log \log n.
\]

To complete the proof we now consider any coprime chain \(B(n) \) chosen so that \(\sum_{b \in B(n)} 1/b \) is minimal for fixed \(n \) and note that \(B(n) \) can contain no number less than or equal to \(\sqrt{n} \). We define \(P \) and \(M \) as in the proof of Theorem 2.2. Then

\[
\sum_{b \in B(n)} \frac{1}{b} = \sum_{p \in P} \frac{1}{p} + \sum_{m \in M} \frac{1}{m} = \sum_{\sqrt{n} \leq p \leq n} \frac{1}{p} + \sum_{\sqrt{n} < p \leq n} \frac{1}{p} + O\left(\sum_{m \in M} \frac{1}{\sqrt{n}} \right)
\]

\[
= \log 2 - \sum_{\sqrt{n} < p \leq n; p \in P} \frac{1}{p} + O\left(\frac{\pi(\sqrt{n})}{\sqrt{n}} \right)
\]

\[
= \log 2 - \sum_{\sqrt{n} < p \leq n; p \in P} \frac{1}{p} + o(1).
\]

Again, using the fact that \(M \) has at most \(\pi(\sqrt{n}) \) members, we have

\[
\sum_{\sqrt{n} < p \leq n; p \in P} \frac{1}{p} = O\left(\frac{\pi(\sqrt{n})}{\sqrt{n}} \right) = o(1).
\]

Hence

\[
\sum_{b \in B(n)} \frac{1}{b} \to \log 2 \quad \text{as} \quad n \to \infty,
\]

and the proof of the theorem is complete.

If \(\{A(n)\} \) is any sequence of coprime chains, then the sequence whose members are \(\sum_{a \in A(n)} a^r \) is bounded for \(r < -1 \), but for certain sequences \(\{B(n)\} \) we may obtain a more precise result.

Theorem 2.6. There exists a sequence \(\{B(n)\} \) of coprime chains
such that the sequence whose members are \(\sum_{b \in B(n)} b^r \) converges to 0 for all \(r < -1 \).

Proof. Assume \(r < -1 \), \(0 < \epsilon < 1 \) given. Choose \(n_0 \) so that \(n_0^{(r+1)/2} < \epsilon/\log 2 \). Let \(\{ B(n) \} \) be a sequence of coprime chains chosen so that, for fixed \(n \), \(\sum_{b \in B(n)} 1/b \) is minimal. By Theorem 2.5 there is an \(n_1 \) so that \(\sum_{b \in B(n)} 1/b < \epsilon+\log 2 \) for all \(n > n_1 \). Since \(B(n) \) contains no number less than or equal to \(\sqrt{n} \) we have \(b^r < n^{(r+1)/2} \) for all \(b \) in \(B(n) \). Thus, for all \(n > n \circ n_1 \), we have \(b^r < (1/b)\epsilon/\log 2 \) for each \(b \) in \(B(n) \) and, hence,

\[
0 < \sum_{b \in B(n)} b^r < \frac{\epsilon}{\log 2} \sum_{b \in B(n)} \frac{1}{b} < \epsilon + \frac{\epsilon^2}{\log 2} < 3\epsilon,
\]

and the proof is complete.

3. Coprime chains of maximal and minimal length.

Definition 3.1. For each \(n > 1 \) choose coprime chains \(A(n) \) and \(B(n) \) so that \(\sum_{a \in A(n)} 1 \) and \(\sum_{b \in B(n)} 1 \) are maximal and minimal, respectively. Define

\[
m(n) = \sum_{a \in A(n)} 1 \quad \text{and} \quad l(n) = \sum_{b \in B(n)} 1.
\]

Now \(m(n) \) and \(l(n) \) are about the same size; more precisely, setting \(r = 0 \) in Corollary 2.3 gives \(m(n) \sim l(n) \sim n/\log n \). However, we can make more precise statements about both \(m(n) \) and \(l(n) \).

Theorem 3.2. \(l(n) \) assumes every positive integral value.

Proof. From the table in the first section, \(l(2) = 1 \) and, since \(l(n) \rightarrow \infty \), it suffices to show \(l(n+1) \leq l(n)+1 \), \(n > 1 \).

Let \(\{ a_i, \ldots, a_k = n \} \) be a coprime chain of minimal length with \(a_i, i = 1, \ldots, k-1 \), square-free. Let \(b_i = a_i/(a_i, n+1) \), \(i = 1, \ldots, k-1 \). Then the members of \(B(n+1) = \{ b_1, \ldots, b_{k-1}, n, n+1 \} \) are relatively prime in pairs and every prime less than or equal to \(n+1 \) divides some member of \(B(n+1) \). Thus, if all 1's are deleted from \(B(n+1) \) and the remaining members are properly reordered, we obtain a coprime chain. Then \(l(n+1) \leq k+1 = l(n)+1 \) and the proof may be completed by induction.

Theorem 3.3. \(m(n) = \pi(n) - \omega(n) + 1 \), where \(\omega(n) \) is the number of different prime factors of \(n \).

Proof. Clearly a coprime chain of maximal length can be constructed by using only \(n \) and all primes less than and relatively prime to \(n \).
Corollary 3.4. $m(n)$ assumes every positive integral value.

Proof. Letting $n = p_k$ in the previous theorem we obtain $m(p_k) = k$.
In Theorem 2.4 the restriction $r \neq 0$ is unnecessary in view of the following

Theorem 3.5. Given $\epsilon > 0$, $m(n) - l(n) > (1 - \epsilon)\sqrt{n}/\log n$ for all sufficiently large n.

Proof. If $\{a_1, a_2, \ldots, a_{2k-1}, a_{2k}, a_{2k+1}, \ldots, n\}$ is a coprime chain and $a_{2k} < \sqrt{n}$, then $\{a_1a_2, a_3a_4, \ldots, a_{2k-1}a_{2k}, a_{2k+1}, \ldots, n\}$ can be reordered to form a coprime chain. Now the coprime chain containing n as largest member and all primes less than and relatively prime to n contains at least $\pi(\sqrt{n}) - \omega(n) - 1$ members less than \sqrt{n}. By pairing these members as indicated above we can form a coprime chain with at most $m(n) - \frac{1}{2} [\pi(\sqrt{n}) - \omega(n) - 1]$ members. But since $\omega(n) < 2 \log n$ we have

$$l(n) \leq m(n) - \frac{1}{2} [\pi(\sqrt{n}) - 2 \log n - 1] = m(n) - \frac{\sqrt{n}}{\log n} \{1 + o(1)\}.$$

Reference

University of New Mexico